Ecology and Epidemiology

Evaluation of Epidemiological Thresholds and Asymptotes
with Variable Plant Densities

David W. Onstad

University of Illinois and Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, 1L 61820.
I thank Edward Kornkven for programming assistance and William Ruesink, Mark Schwartz, and two anonymous reviewers for

comments on early drafts.

This project was partially supported by an NCSA-PRB grant BSR-900000N; a Thinking Machine CM-2 at the National Center
for Supercomputing Applications (NCSA) at the University of Illinois was utilized. Mr. Kornkven’s salary was partially supported

by a grant from the NCSA.

This paper is a contribution of the Illinois Natural History Survey and Project 12-313 of the Illinois Agricultural Experiment Station,
College of Agriculture, University of Illinois at Urbana-Champaign.

Accepted for publication 15 June 1992,

ABSTRACT

Onstad, D. W. 1992. Evaluation of epidemiological thresholds and asymptotes with variable plant densities. Phytopathology 82:1028-1032.

Simulations of a simple model of the temporal and spatial dynamics
of a hypothetical pathogen demonstrated some limitations of Van der
Plank’s threshold formula, iR > 1. The threshold value of iR (total
potential reproduction per pathogen) that determines whether the density
of infected (latent and infectious) leaflets will increase over a pathogen’s
generation increased as the initial density of susceptible hosts decreased.
In model simulations, levels of disease (sum of latent, infectious, and
removed lesions) increased under all scenarios with various values of
host density and iR. Thus, disease levels cannot be used in hypotheses

to predict the population dynamics of the pathogen. Probabilistic formulas
were developed as proposed thresholds for predicting the change in the
number of infected hosts over a pathogen generation. These formulas
are based on the proportion of a region occupied by hosts, the initial
proportion of hosts that are infected, and the number of sites within
the propagule dispersal neighborhood. The formulas of Van der Plank
and Jeger that describe the asymptotic proportion of diseased tissue
generally failed to match the simulated results because of the simplicity
of the formulas’ underlying model and assumptions.

A traditional practice in theoretical plant epidemiology has
been the expression of hypotheses in simple mathematical formu-
las. Some of these formulas are used to predict the final or asymp-
totic level of diseased host tissue (6,18). Other formulas are used
to predict changes or the lack of changes in the level of diseased
tissue. For example, Van der Plank (16) postulated that total
potential reproduction per pathogen, iR, must be greater than
one for an epidemic to occur.

These hypotheses were adequate at the time of their develop-
ment, but now must be investigated critically from several points
of view. First, none of the hypotheses includes temporal and spatial
scales that allow them to be tested or implemented (12). Second,
no one has questioned the use of diseased tissue as the indicator
variable in these formulas. Does this variable permit implementa-
tion of the hypotheses in disease management? Do the formulas
actually predict changes in this indicator variable as the hypotheses
suggest? Third, the influence of host density has never been in-
cluded in these hypotheses. Hypotheses should now consider host
density so that predictions can be made for many natural and
managed situations in which host tissue does not uniformly cover
space.

This paper addresses the issues concerning proper indicator
variables and the influence of host density. Because of the com-
plexity of the problem, a numerical model was computed to study
the temporal and spatial dynamics of a hypothetical pathosystem
in a heterogeneous environment (11). Although other plant path-
ologists have modeled the temporal and spatial dynamics of real
or hypothetical pathogens, they have not addressed the issues
of thresholds and asymptotes (7-10). Most often, the emphasis
was on the study of dispersal gradients, focus spread, and disease
(not pathogen) progress (20). Fleming et al (4) demonstrated how
host field size and shape could influence the increase and per-
sistence of pathogens, but they did not provide a temporal scale
in their general conclusions, and their fields consisted of homo-
geneously distributed and nonlimiting susceptible tissue.
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MATERIALS AND METHODS

The pathosystem described below is similar to the basic systems
studied by Van der Plank (16,17) and Zadoks (19). It has one
host species and one strain of pathogen that infects the host’s
leaves. The host’s phenology does not influence its interaction
with the pathogen, and the pathogen cannot kill the host. Climatic
and seasonal variations in the environment do not affect the
generation times of the host and pathogen.

Onstad and Kornkven (13) described the pathosystem with four
differential equations. In these equations, S represents susceptible
host tissue (leaflets per plant site), N symbolizes total host tissue
(leaflets per plant site), and L, 7, and D are the densities of leaflets
with latent, infectious, and removed lesions (leaflets per plant
site), respectively. The density of infected but not yet infectious
lesions is L. For simplicity, I assume that a lesion covers a single
small leaflet by the end of the latent period.
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with RI;(S,/N;) < S,. The total amount of host tissue N is
constant when b = 0. Because N equals S+ L+ I+ D, S/N
is equivalent to 1 — (L + I + D)/N. The latent period is p,
and the infectious period is i. Both periods are expressed in days.
R is the potential reproductive rate in terms of new inoculum



per infectious lesion per day. If this inoculum lands on susceptible
tissue, then it will produce infected leaflets or latent lesions. On
the average, a new lesion requires p days to completely cover
its leaflet. The variable L is part of the infected tissue that reduces
reproduction because when two or more propagules land on a
latent leaflet, the leaflet will still be completely covered p days
after germination of the first propagule. The final inequality ex-
pressed above prevents the amount of newly formed latent leaf-
lets from exceeding the amount of available susceptible tissue.

To model the dynamics of the pathogen in space, I assigned
the four state variables calculated by Equations 1-4 to each site
in a very large two-dimensional grid. Some or all of the sites
may be occupied by a host plant. Thus, the distribution of hosts
is not necessarily uniform. Inoculum is dispersed among plants
by assigning one-fifth of RI, calculated at site j to site j and
one-tenth to each of the eight adjacent sites. Propagules landing
on nonhost sites are lost. Those landing on host plants survive
and germinate with probability S,/ N, for plant k. Hosts on the
edge of the grid communicate with and are assumed to be adjacent
to the sites on the opposite edge. No inoculum is dispersed out
of the region.

In Equations I and 4, the relative density of susceptible leaflets,
S/ N, is used to represent the probability of survival and germi-
nation during dispersal and infection. As Van der Plank (16)
mentioned, the use of S/N in a single-equation model is correct
only if the susceptible hosts are homogeneous throughout a field.
The use of absolute density is important when the plant canopy
does not provide a uniform and complete cover of the land, such
as in young crops and natural habitats, or when nonhost species
are abundant. I modeled the absolute density of hosts in the
model by changing the total density for the entire region.

The model was programmed in FORTRAN and computed on
the Connection Machine 2 at the National Center for Supercom-
puting Applications at the University of Illinois. This massively
parallel computer has 32,768 processors, but I only used one-
quarter of the machine. These 8,192 processors were modeled
as a 64 X 128 grid. Each simulation of 1,000 daily time steps
with Euler integration required 2 min on the computer.

To discover which factors lead to increases in the pathogen
population in the host population, I varied host density in
the region and the value of iR. The number of host sites with
Ny; > 0 among the 8,192 possible sites was 8,192, 3,000, 1,000,
or 300. When the number of host sites was less than 8,192 (the
uniform distribution), the hosts were randomly distributed across
the 8,192 sites. All host sites had the same initial value of N;
= 50. After assigning the Ny, the initial values of Ly; and Iy,
were randomly allocated to 19 of the hosts. For these hosts,
Lo; = 3 and Io; = 2. The initial value of D was always zero.
After allocating Ly;and /g, the Sy; were calculated as the remainder
of the Ny, Host growth rate was zero. At least four replications
were made of each simulation so that the host and pathogen

were adequately mixed. If necessary, a fifth replication was made
to reduce the coefficient of variation to approximately 10% of
the mean for the final values of several output variables.

For the simulations of 8,192, 1,000, and 300 hosts, only two
values of iR were used: 1 and 5. With 3,000 hosts, iR equaled
0.5, 1.0, 2.3, and 5.0. The latent and infectious periods, p and
i, were combined in three sets in which p and i were equal (2,
10, or 20 days). I analyzed the following variables in each simu-
lation: regional counts of hosts with densities of L, 7, and D
greater than one-thousandth of a leaflet; and sums of leaflets
S,L+ I, L+ I+ D, and I+ D for the entire region. A variety
of measures were used to avoid the problem identified by Burdon
and Chilvers (3) of relying on only one variable for identification
of relationships.

When hosts are randomly distributed and initial infections are
independently and randomly assigned as in this study, simple
formulas can be developed to describe the likelihood of a pathogen
spreading from an infected host to a susceptible one. Perhaps
the simplest estimate is the probability, P/, of finding a site that
is part of a cluster of two or more hosts. This value is calculated
by subtracting the sum of the probabilities of finding only zero
or single clusters (i.e., sites with no host or with an isolated host)
from 1.0. Thus, PI =1 — ([1 — f] + f[I —f] ) is the formula
based on f, the initial proportion of the region occupied by the
host and r, the number of sites surrounding an infected host
that receive dispersed propagules.

A more appropriate formula is based on a binomial distribution
in which the occupation status of a site is a trial, and the occupation
of that site by a host is a success. The probability that a site
is surrounded by at least one healthy host in the neighborhood
of propagule dispersal is

P2= fr A= A=y R e—hY)  (5)
h=1

in which f; y, and r are the proportion of the region occupied
by the host, the initial proportion of hosts infected, and the number
of sites surrounding an infected host that receive dispersed
propagules, respectively. The first term in Equation 5 is the
probability of A sites being occupied. The next term is the prob-
ability of r — h sites being vacant. The third term is the probability
that not all & hosts are infected (at least one is healthy). The
final term is the binomial coefficient. The probability of finding
a site with an infected host surrounded by at least one healthy
host within the dispersal neighborhood is P3 = yf X P2. For
P2 one assumes, if one expects possible spread of a pathogen,
that the chosen site is occupied by an infected host; for P3 this
assumption is not made because P3 explicitly accounts for it.
If 8,192y << h <r, then Equation 5 should be modified to account
for the cases in which no more than 8,192yfsites in a neighborhood

TABLE 1. Maximum numbers of infected (latent [L] and infectious [1]) and diseased (latent, infectious, and removed [ D]) leaflets in region, proportion
of infected leaflets, and maximum number of infected leaflets per host in region

Total host Proportion Infecteds
density® iR Infected Diseased infected per host
300 1 15+0° 19£1° 0.0010° 0.050*
5 18 + 6° 94 + 56" 0.0012 0.059
1,000 1 500 73+1 0.0010° 0.050¢
5 192+ 8 1,064 £ 114 0.0038 0.192
3,000 0.5 150 £0 198 £3 0.0010° 0.050°
1 150+ 0 300 £ 11 0.0010° 0.050*
23 648 + 103 25,130 £ 3,366° 0.0043 0.216
5 4,956 + 1,000 85,650 + 5,258 0.0330 1.65
8,192 1 4100 12,061 + 23¢ 0.0010° 0.050°
5 121,196 + 2,304 407,282+ 0 0.2959 14.8

*One percent of hosts were initially infected with N = 50, L = 3, and I = 2; latent period, p, and infectious period, i, were equal to 10 days.
®These means and standard deviations are based on five replications; all others are based on four.

© A value of 0.0010 indicates that L + I leaflets did not increase.
¢ A value of 0.050 indicates that L + / leaflets did not increase.

© Because infected plants and leaflets persisted, this value is for L + 7+ D, not just D, leaflets.
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can be inhabited by infecteds. The variable y” should be replaced
by v, in which v = )" for h < 8,192yf and v = 0 for h > 8,192yf.

RESULTS

The influence of host density and iR on densities of infected
and diseased leaflets is shown in Table |. Diseased tissue represents
the cumulative total of latent, infectious, and removed leaflets
in the region. Levels of disease increased no matter how low
the host density or the value of i R was. With iR= 1, the proportion
and density of infected leaflets observed at any time did not
increase from the initial value; the values always declined over
time. The same pattern was observed for the number of infected
leaflets per host on average. For iR = 2.3, the density and
proportion of infected leaflets increased above the initial level.
These increases were observed in all replications except with 300
hosts; three out of five replications of iR = 5 and 300 hosts
resulted in no increase. Very few susceptible leaflets remained
among the 8,192 hosts when iR = 5 (Table 1).

A major assumption in the iR formulas of Van der Plank is
that the mother pathogen dies or is removed when reproduction
stops. Thus, the lifespan or generation time of the pathogen is
the time unit assumed in the threshold formulas for iR. This
assumption explains why iR = 1 is considered the point at which
a given generation exactly replaces itself in the next generation.
However, this assumption of replacement must be logically based
on counting only living pathogens or infected tissue, not both
living and dead or diseased tissue.

Figure | demonstrates how the density of infected leaflets in
the region changes over the first generation time as a function
of iR and total host plant density. In this study, pathogen
generation time is 3, 17, and 34 days for latent period p and
infectious period i equal to (2,2), (10,10), and (20,20) based on
median age of reproduction (12,13). The change was expressed
as a percentage of the initial density, because this simplifies the
identification of the threshold for increase at 09 (14). A regression
line of the form z = a + ¢(iR) was fit to each set of points
on the basis of host density. This simple form was chosen because
for three out of four host densities only two values of iR were
tested and because the four iR values with 3,000 hosts indicated
that a straight line would be appropriate. All lines had coefficients
significantly different from zero (P < 0.001). For each set of
iR and host density there are 3 X 4 or 3 X 5 (300 hosts) points
based on combinations of p and i and the replications. The r*
for the lines were 0.88, 0.97, 0.99, and 0.91, respectively, for host
densities 8,192, 3,000, 1,000, and 300. Much of the variability
in the values reported for 8,192 hosts is due to the approximation
to the nearest day of the median age of reproduction and great
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Fig. 1. Percentage of change in the density of infected leaflets (L + 1)
in the region during the first generation of the pathogen as a function
of total reproduction per pathogen, iR, and host density. The lines
represent the best fit to each set of points.
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potential for increase with iR = 5; each set of four replicates
had very similar values.

The threshold value of iR that predicts or determines whether
the density of infected leaflets (L + I) will increase over a
pathogen’s generation increased as the initial density of susceptible
hosts in the region decreased (Fig. 1). The threshold values of
iR were based on the straight lines fit to the points and were
1.01, 1.88, 3.12, and 5.14 for 8,192, 3,000, 1,000, and 300 hosts,
respectively. At the beginning of all simulations, 99% of the hosts
and 99.9% of the leaflets in the region were completely free of
infection, so these constant percentages could not have been the
reasons for the differences in the thresholds.

Two other conclusions can be drawn from the data in Figure
1 on the basis of regression analyses of all 126 points. Host density
as a class variable (15) did not significantly influence the inter-
cept but it did affect the slope (P < 0.001). The equation,
z = —66 + 119 X f X iR was fit to the data and produced
r* = 0.91. Both coefficients were significantly different from zero
(P <0.0001).

The influence of host density and iR on the number and
proportion of infected hosts is shown in Table 2. With 1,000
or fewer hosts, an increase in iR from | to 5 had very little,
if any, influence on the counts and proportions. At higher host
densities, the number of infected hosts apparently reached
maximum levels limited by host density when iR increased. As
host density increased, the peak counts increased, indicating that
the increase and spread of the pathogen is constrained by host
density (Table 2). At 300 hosts, the initial counts of three plants
and three units of nine sites were not exceeded in three out of
five and four out of five replications, respectively, at either value
of iR.

Table 3 contains the values of PI, P2, and P3 for various
values of f, the proportion of the region with hosts, and y, the
proportion of the hosts infected. The values of f correspond to
3,000, 1,000, 300, and 100 hosts in a region of 8,192 sites. For
this study r = 8, but the formula can be used for any r > 0.
PI is insensitive to y but decreases with decreasing f. In general,
P2 increases as y decreases and decreases with f for values less
than 0.366. Probability P3 decreases as both f and y decrease.
P1I is useful as a quick and simple indication of what proportion
of sites is available for clusters of two or more. For example,
in the last set of PI values, only one out of a thousand sites
have hosts in a cluster of two or more. Without these clusters,
the pathogen cannot spread from plant to plant. If we know
there is an infected host at a site, then P2 is the probability that
at least one susceptible host surrounds it. Because the existence
of the infected host is a given, P2 increases as the proportion
of healthy hosts increases (as y decreases). The opposite occurs
for P3, because it must account for the probability, yf, that an
infected occurs at a given site.

The asymptotic proportion of diseased leaflets (Q = L + [
+ D; Q= D at asymptote) can be predicted from formulas created
by Van der Plank (18) and Jeger (6). The basic formula is Q

TABLE 2. Maximum number and proportion of infected plants (with
positive L and I) in region

Total host Infected Proportion
density" iR plants infected
300 1 38+ 1.3° 0.0127
5 3.8+ 1.3° 0.0127
1,000 1 29+ 2 0.0290
5 3I0£3 0.0300
3,000 0.5 219+ 13 0.0730
1 331+ 32 0.1103
2.3 1,537 & 165 0.5123
5 1,520 + 177 0.5067
8,192 1 8,187 = 10 0.9994
5 8,192+ 0 1.0

*One percent of hosts were initially infected; latent period, p, and
infectious period, i, were both 10 days.

®These means and standard deviations are based on five replications;
all others are based on four.



=1 — Cexp(—iRQ) with C =1 — g, according to Van der Plank
and C = (1 — gy)exp(qy) according to Jeger. The variable g,
is the initial proportion of tissue that is diseased (latent, infected,
or removed). All the simulations started with g, = 0.001. Table
4 shows the calculated values based on the two formulas and
the values simulated with my model. In general, all the simulated
values of Q were different from those calculated with the formulas.
Because neither formula contains a variable for host density, the
formula-based values were insensitive to density. For iR = 0.5,
the value is undefined under the assumptions of Jeger’s (6)
formula. Levels of simulated disease increased no matter how
low the host density or the value of iR was (Table 4).

DISCUSSION

Van der Plank (16) postulated that no epidemic could start
or that no increase in disease would occur unless iR > 1. Certainly
positive reproduction is necessary for an increasing population
of pathogens, but this positive value is not sufficient. Van der
Plank (17) realized that his formula and theorem were appropriate
only for situations in which the spread of disease is not constrained
by limited amounts of susceptible host tissue. By restricting his
theorem to the start of an epidemic and to situations in which
S/N is close to 1 and host density is very large, he was able
to omit the density of susceptible hosts from his formula.

The threshold theorem of Van der Plank (16) did not explicitly
consider plant host density because agricultural monocultures
have plenty of plants, they do not move, and wind or plant-
to-plant contact can easily spread diseases among neighboring
hosts in most situations. Nevertheless, in natural communities
(1), in urban plant communities (2), in crops at seedling stage
(open canopy), or in crops under significant attack from herbi-
vores, plant density may be important.

For this study, the value of iR that is a threshold for predicting
the increase in infected host tissue over a single pathogen
generation is dependent on the host density (Fig. 1). The general
hypothesis that a mother pathogen must produce more than one
offspring to increase the population density is fine. However,
for this to be true in reality or in a model, the actual successful
reproduction must be above one. The term iR has always repre-
sented potential reproduction that does not account for losses
in offspring during dispersal and germination. The propagules
must land on hosts and on susceptible tissue. Therefore, host
density is important.

Apparently, no threshold value of iR exists for an increase
in the number of infected plants in the region (Table 2). Figure
I suggests that no host density threshold exists for predicting
increases in infected leaflet density. Logically, increases in infected
leaflets will occur when the initial conditions provide an infectant
lesion on a plant with susceptible tissue even if that host is not

TABLE 3. Probabilities of initial spread in a region of 8,192 sites (r = 8)
with the proportion of occupied sites equal to fand the initial proportion
infected equal to y

I y PI* P2 P3¢
0.366 0.50 0.357 0.80 0.14680
0.10 0.357 0.96 0.03513
0.01 0.357 0.97 0.00356
0.122 0.50 0.079 0.40 0.02416
0.10 0.079 0.61 0.00740
0.01 0.079 0.64 0.00079
0.037 0.50 0.009 0.14 0.00252
0.10 0.009 0.24 0.00086
0.01 0.009 0.26 0.00009
0.012 0.50 0.001 0.05 0.00029
0.10 0.001 0.08 0.00010
0.01 0.001 0.09 0.00001

* Probability of a site in the region being part of a multiple-host cluster.

® Probability that a site is surrounded by at least one susceptible host
in a dispersal neighborhood of nine.

“ Probability that a site has an infected host surrounded by at least one
susceptible host. P3 = yfP2,

surrounded by other susceptible hosts. But, is there a threshold
host density for predicting increases in the number of infected
plants? In a probabilistic sense, there is a threshold based on
host density.

A probabilistic threshold based on host density can be used
to predict whether a pathogen can spread to susceptible hosts
during a single pathogen generation. Three pieces of information
are required in the formulas: f; the proportion of a region occupied
by a host; y, the initial proportion of hosts infected; and r, the
number of sites surrounding a central site within a neighborhood
of propagule dispersal. The value of r is related to the size of
the ecologically proper spatial unit defined by the dispersal be-
havior of the pathogen (12). 1 propose that either P/ or P3 be
used to calculate probabilities that can be compared to thresholds.
Consensus within the epidemiological community will be needed
for deciding on the actual threshold value. When £ < 0.10, PI
=f—f(1 = f) may provide adequate information more quickly.
A threshold value of 0.001 might be appropriate for this formula.
This value would mean that only one out of 1,000 sites would
be likely to have a host in a cluster of two or more. The better
but more complicated formula is P3. This probability is a direct
indicator of the probability that an infected host will be capable
of dispersing the pathogen to a susceptible neighbor. A threshold
value of 0.00001 may be appropriate when this formula is used.
In Table 3, this value occurred when approximately 1% of the
sites were occupied by hosts, and 1% of these were initially infected.
Both PI and P3 were highly correlated (r > 0.9) with the maximum
number of infected hosts and proportion of infected hosts reported
in Table 2. Both formulas were based on the assumption of random
distributions of hosts and initial infection, and P3 is approximately
equal to y Pl when y is small (Table 3).

The simulated and formula-derived asymptotic proportions of
diseased tissue were very different (Table 4). Jeger’s (6) formula
cannot account for disease levels with iR < I, and it did not
predict increases with iR = 1. Van der Plank’s (18) formula and
the simulations predicted qualitatively different asymptotes than
Jeger’s; for both iR < | and iR = |, increases above the initial
conditions were predicted. The reason for the difference between
the two formulas is that Van der Plank’s C = 1 — g, assumes
that no change occurs in disease levels at iR = 0, whereas Jeger’s
formula produces no change at iR =1 (qo = 1 — [1 — gyJe? 9).
Perhaps, Jeger confused the increase in infected tissue at iR >
1 with the increase in diseased tissue at iR > 0. Because both
formulas were derived from typical assumptions about uniform
and limitless host populations, the formula-derived values were
generally higher than simulated values when iR = 5 or 2.3. The
exception to this pattern was with 8,192 hosts and iR = 5, in
which case the simulated value was slightly higher (Table 4).

For several reasons, infected (L + I) rather than diseased (L
+ I + D) tissue or hosts should be used as indicator variables

TABLE 4. Asymptotic (final) levels of diseased leaflets, Q, simulated
with numerical model or calculated with formula Q = 1 — Cexp(—iR(Q),
in which C = 1 — g, according to Van der Plank (VdP), or C = (I
= qq)exp (qo) according to Jeger

iR Hosts" VdP Jeger Simulated
0.5 3,000 0.002 . 0.0013
1 300 0.044 0.001° 0.0013
1,000 0.044 0.001° 0.0015
3,000 0.044 0.001° 0.0020
8,192 0.044 0.001° 0.0294¢
2:3 3,000 0.860 0.862 0.1675
5 300 0.993 0.993 0.0063
1,000 0.993 0.993 0.0213
3,000 0.993 0.993 0.5710
8,192 0.993 0.993 0.9943

*One percent of hosts initially had 10% of their leaves infected (g, =
0.001). Region has sites for 8,192 hosts.

® Formula is not defined for values of iR < I.

‘WithiR=1, 0= gq,.

“Slightly lower than asymptote because 19 out of 409,600 leaflets were
either latent or infections on day 1,000.
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in threshold formulas and other hypotheses concerning pathogen
population dynamics. In this study, diseased leaflets always in-
creased in density to a maximum and never declined. The same
can be said about diseased hosts in the study of pathogen spread
through space. In 1988, Hau (5) noted that disease levels can
increase when iR < 1. The density of diseased leaflets will always
increase above the initial value as long as the initial density includes
latents or infectants. Because the density of diseased tissue never
declines, Onstad and Kornkven (13) found that diseased hosts
and leaflets could not be used as indicator variables for repre-
senting the pathogen population in studies of persistence and
endemicity. For these reasons, I conclude that studies of pathogen
increase and spread should use infected tissue and infected hosts,
respectively, as indicator variables.

Results of this study demonstrate that hypotheses can now
be extended to include host density. Perhaps, additional or im-
proved formulas can be developed when studies are done of other
spatial distributions of hosts and of other spatial units defined
by dispersal and the parameterr.
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