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ABSTRACT

Yang, X. B., and Zeng, S. M. 1992, Detecting patterns of wheat stripe rust pandemics in time and space. Phytopathology 82:571 -576.

Pandemics of wheat stripe rust from 1950 to 1990 were analyzed with
data from five key regions in different geographical areas in northern
China. Epidemics in one region were correlated with epidemics in other
regions. Spatial correlation coefficients increased as spatial distance
decreased. The epidemic time series of the source region, where rust occurs
year round, was not correlated with lagged epidemic series of regions
in the dispersion area. Average epidemic indices of one region were
associated with distance from the source region and latitude of the region.
Time series analysis also was used to determine temporal pattern. An
epidemic time series of each region was identified as the autoregressive
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integrated moving average (ARIMA) (3,1,0) for the source region and
ARIMA (2,2,0) for regions in the dispersion area, which indicate that
the epidemic value in a given year is related to epidemics of the previous
4 yr. There was a downward trend in the 41-yr pandemic series, except
in Gangu. Mean epidemic indices from northern China were greater for
the period of 1950-1969 than for the period of 1970-1990. Less frequent
and less destructive pandemics were noted in the second period; this may
be due to improved disease management by advanced agricultural
techniques.

Wheat stripe rust (Puccinia striiformis Westend.) is the most
important pandemic wheat disease in China (16). There are three
independent pandemic systems of this disease (12,16); the largest
and the most important one is in northern China (Fig. 1). There,
wheat is grown on 16 million hectares, which accounts for more
than 60% of the total wheat production in China. Previous studies
(9,12) showed that the pathogen source area of the system is
in the mountainous region of Gangsu Province, where wheat is
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grown year round and where P. striiformis can overwinter and
oversummer. In the fall, northwest air currents carry uredinio-
spores to the Yellow River Basin (the dispersion area) as far
south as Xinyang and as far east as the eastern coast; the uredinio-
spores cause infection on winter wheat seedlings. In the dispersion
area, pathogen survival to the following spring on infected leaves
depends on latitude and severity of winter (12). In some years,
the disease can cause yield losses as high as 65% (10).

The Chinese Plant Pest Monitoring and Forecasting Station
has given the study of wheat stripe rust number one priority,
and agents have monitored the disease in provinces, legislative
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regions, and counties. Other important plant pests that develop
on a continental scale have been monitored systematically with
standardized pest indices by this network every season for decades.
Vast amounts of pest development data on a continental scale
have accumulated. Similar data are collected by government
agencies in different countries, such as the Animal and Plant
Health Inspection Service, United States Department of Agri-
culture. However, to our knowledge, these data have not been
used with quantitative analysis. The present study mainly exam-
ines disease development in fields; periods are limited to growing
seasons. Quantitative analysis of long-term disease pandemics on
a macroscale is needed. Interest in the study of disease epidemics
on meso- and macroscales is increasing, and a few studies to
model interregional spread (14) and to predict pandemic race-
cultivar interaction (15) have been reported. Such information
will be useful for the development of sustainable agriculture.

A pandemic record over decades is a time series. Analysis of
time series is a well-developed branch of statistics. It has been
widely applied to many ecological disciplines as a powerful tool
to detect a long-term pattern of population dynamics (5). Some
methods from time series analysis have been used to detect disease
spatial patterns in fields (4,8). Time series analysis should be useful
in modeling long-term dynamics of plant disease. In this study,
we analyzed wheat stripe rust pandemics in northern China over
the period of 1950-1990; we used a time series approach.

MATERIALS AND METHODS

Pandemic data. The northern China pandemic system of wheat
stripe rust covers the Yellow River Basin (Fig. 1). Ecology and
epidemiology of the pandemic system have been well-documented
(12,16). Data from five regions representing different geographical
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Fig. 1. Pandemic system of wheat stripe rust (Puccinia striiformis) in
northern China (shaded areas). Gangu is the source region of the system,
and the other regions are in the dispersion area. The prevalent currents
are castward in fall and northward in spring.
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areas of the system were used (Table 1). In brief, the Gangu
region, where wheat is grown in the valley during winter and
on the mountain in summer, is the pathogen source area of the
system (9,12). P. striiformis can overwinter and oversummer in
Gangu. Xian, Xinyang, and Zhengzou are regions in the frequent
dispersion area of the system (12). In the Xian region, 300 km
east of Gangu, the pathogen overwinters in diseased leaves, and
epidemics develop in early spring. Xinyang is in the southeast
area of the system, where winter wheat is infected in the fall,
and the pathogen reproduces slowly during winter (11,12).
Zhengzou is near the transitional line for pathogen overwintering.
There, winter survival of diseased leaves depends on snow depth
and winter temperature. Consequently, the amount of endogenous
spring inoculum varies from year to year. Beijing is far north
and is in an infrequent dispersion area of the system. Very few
diseased leaves are detected in the fall, and the pathogen over-
winters only when there is a thick snow cover. Urediniospores
from the southern part of the system provide initial inoculum
for Beijing in the spring.

Stripe rust epidemic data of the above five regions (Fig. 1;
Table 1) from 1950 to 1990 were used. Annual epidemics of stripe
rust in each region were recorded as epidemic indices in five classes
(Table 2). Based on the five classes, epidemics between two classes
were also recorded (Table 2). The epidemic index reflects preva-
lence and severity of disease in a region. For quantitative analysis,
the five classes were assigned values of 0-4 (Table 2). Epidemic
index values of each region were plotted against time to examine
the trend over 41 yr. The overall pandemic series in northern
China was the mean index value calculated from the five regions.

Spatial analysis. Epidemic trends over the 41 yr were compared
among different regions. The frequency of each epidemic index
=3.0 was counted for each region over the 41 yr, and average
epidemic indices were compared among the five regions. Spatial
relationships among the five regions were determined by cal-
culating a spatial correlation coefficient matrix from the 41 yr
of epidemic data.

We also determined correlations between the epidemic series
of the source region (¥,) and the lagged epidemic series of
dispersion regions (¥4, i = 1,2, ... 10 yr) to check for a lagged
relationship between source region and dispersion regions of the
epidemic.

Temporal analysis. There are four types of time series: (1) white
noise (WN), which is a purely random process; (2) autoregressive
(AR), in which a current value is related to the past values; (3)
moving average (MA), in which a current value is related to current
and past random variations; and (4) autoregressive moving
average (ARMA), which is the linear combination of AR and
MA processes (1,6).

An output signal of a system is a combination of input, regular,
and irregular (WN) signals. A pattern exists in the sequential
records of a system output (time series) if a regular signal has
been input. Generally, a time series is composed of WN series
and other regular signal series. Components of regular signals
usually include trend and cyclic behavior (oscillation). A series
having cyclic pattern shows attributes of an AR series. By using
different techniques, one can decompose a series into regular and
irregular signals to find out the patterns. For this analysis, time
series approach was used, and a computer package, Timeslab
(6), was employed. The method is briefly described here, but details
can be found in texts by Chatfield (1) and Newton (6).

TABLE I. Characterization of five epidemic regions in the northern China
pandemic system of wheat stripe rust (Puccinia striiformis)

Over Over  Reproduction Position
Region winter  summer in winter in the system
Gangu Yes Yes Variable Source
Xian Yes No No Frequent dispersion
Xinyang  Yes No Yes Frequent dispersion
Zhengzou Variable No No Frequent dispersion
Beijing Rare No No Infrequent dispersion




Analysis of a time series requires that the series be stationary,
because most of the probability theory of time series is concerned
with stationary time series (1). A stationary series has a mean
and a variance that are unchanged in time and a frequency that
is normally distributed. If there is a trend in a series, the series
is not stationary, and it must be stabilized by transformation.
For our epidemic series (¥,Y,, . . . Y4), we transformed the
time series by differencing to stabilize the process. The first order
difference was X, = Y, — Y,_,. The second order difference was
W,=X,— X, ,or W,=Y,—2Y_, + Y., Generally, order
of difference should not be greater than two to avoid overdif-
ferencing (1).

Patterns in a stationary time series were identified with a
procedure called ID.MAC (6). We used the following methods
in time domains to examine patterns: AR correlation (correlo-
gram), which measures the correlation between observations at
different time lags; and partial AR correlation, which measures
the correlation between observations at different time lags after
the common linear effect of the data has been removed. If a
correlogram is within the 95% simultaneous confidence band and
the partial autocorrelation coefficients are close to 0 over lag
time, there may be no pattern. The process is considered WN
(random). A pattern may exist if the above situations do not
occur, and the type of the pattern can be determined based on
plots of correlogram and partial autocorrelation. Generally (6),
for an AR process with order p, AR(p), the correlogram decays
exponentially to 0. The partial autocorrelation function also is
0 for lags greater than p. For an MA process with order ¢, MA(q),
the correlogram is 0 for lags greater than ¢ (cut off at ¢), and
the partial autocorrelation decays exponentially to 0. For an
ARMA process, neither the correlogram nor the partial correlo-
gram is 0 past some lags; rather, they each decay exponentially
to 0. Data were examined by individual location.

An ARMA model was constructed with the ARMASEL pro-
cedure as:

X, = ﬂ1X,_| e apX,_p - quf_q.
_.‘.—b|Z,_|+Z, (1)

in which ay, . . . ,a, and b, . . . ,b, are unknown parameters
to be estimated from the data. Equation | expresses X, as a linear
combination of AR term a,X, in which the current value is related
to past values, and of MA term b;Z;, in which the current value
is related to current and past shocks. ARMASEL is a stepwise
regression procedure used to determine the values of parameters.
The selected parameters are expected to be consistent with the
order of a process. We examined the residual process to determine
if it was WN (6). If a nonstationary series is stabilized with dth
order difference before regression, the model constructed would
be called an integrated ARMA model, ARIMA( p,d,q). We used
the Akaike Information Criterion (AIC; 6) to determine the fit
of a model.

RESULTS

Wheat stripe rust fluctuates in the five regions and appears
erratic in time (Fig. 2). There were five severe pandemics in
northern China from 1950 to 1990 (Fig. 2). Pandemics in 1950,

1964, and 1990 attained a destructive epidemic index of 4, whereas
pandemics in 1957 and 1959 reached 3.5 (Table 2). The 1959
pandemic resulted from the breakdown of resistance in a dominant
cv. Bima-1 (13). In terms of epidemic frequency, the series in
northern China can be divided into two periods, 1950-1969 and
1970-1990. The disease occurred more frequently in the first
period. The average epidemic indices were 2.15 and 1.33 for the
first and second periods, respectively.

Spatial relationship. Generally, values of spatial correlation
coefficients decreased as the spatial distance between two regions
increased (Fig. 1; Table 3). The greatest value of r was 0.84 for
Beijing-Zhengzou, and the smallest value was r = 0.56 for Gangu-
Beijing.

Geographical differences in epidemics were found among the
five regions. Epidemics in the Gangu region were greater than
or equal to index 1 every year; in Beijing, null disease (index
0) was recorded 15 out of 41 yr. The numbers of epidemic indices
=3.0 during the 41 yr were 19, 11, 11, 12, and 4 for Gangu,
Xian, Xinyang, Zhengzou, and Beijing, respectively. Depending
on latitude and spatial distance from the source region Gangu,
the average epidemic index had a gradient. In the east-west
direction, average epidemic indices were 2.22, 1.87, and 1.83 for
Gangu, Xian, and Zhengzou, respectively. In the south-north
direction, indices were 1.93, 1.83, and 0.91 for Xinyang, Zhengzou,
and Beijing, respectively.

The absolute values of correlation coefficients between epidemic
process of source region (Y,) and lagged epidemic process (¥,
i=12,...10 yr) of any dispersion region were smaller than
0.26, indicating that the epidemic time series of the source region
was not correlated with the lagged epidemic series of dispersion
regions.

Time series. The epidemic series for Gangu was not stationary
as indicated by frequency distribution. First order differencing,
however, resulted in a stationary process for Gangu as shown
by the plot of differenced epidemic index values (Fig. 3A) and
by the approximate normal distribution of frequency of differ-
enced values. Although the correlogram was within the 95%
confidence limits, there was a high value at lag 3 (Fig. 3B). The
partial autocorrelation had a high value at lag 3; after which,
values were close to 0 (Fig. 3C), indicating an AR(3) process.
The result of stepwise regression with a procedure for ARMA
selection (ARMASEL.MAC) was an ARIMA(3,1,0) model, in
which p =3, g =0, and d = 1 (Tables 4,5).

Epidemic series over years had a noticeable downward trend
for the dispersion regions (Fig. 2). The series were not stationary.
Patterns among dispersal regions were similar. Complete results
from Beijing are given as a representative of dispersal regions
(Fig. 4); for other regions, only correlograms are shown (Fig.
5). For Beijing, a second order differencing resulted in a stationary
process as shown by the plot of differenced index values (Fig.
4A) and by the approximate normal distribution of frequency
of differenced values. In the correlogram, there was a significant
negative value out of the confidence bands at lag 2 for each region
except for Xinyang, which almost reached the lower band (Figs.
4B,5). The partial autocorrelation had a high value at lag 2; after
which, values were cut off to 0 (Fig. 4C), indicating the differenced
arrays were AR(2). Models for the four dispersal regions were
ARIMA(2,2,0), in which p = 2, ¢ = 0, and d = 2 (Tables 4,5).

TABLE 2. Epidemic index of wheat stripe rust (Puccinia striiformis) and its numerical values used in analysis

Index Description Numerical value
Null Disease rarely detected in a region 0

Trace Disease prevalence less than 5% in a region 0.5

Light Light disease epidemic in a region 1

Light to moderate
Moderate

Moderate to severe
Severe

Severe to destructive
Destructive

Destructive epidemic in >509% of a region
Destructive yield reduction in a region

Disease more than light in a region 1.5
Moderate epidemic in part of a region 2
Severe epidemic in <50% of a region 2
Severe epidemic in >>50% of a region 3
3
4
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Residuals from the five regions were WN.
By substituting difference equations into the ARIMA models,
we found a common model for the pandemic system:

Y/=aY taYytayY 3t aY 4+ Z (2)

in which ay, . . . ,a, are coefficients and are different for different
regions (Tables 4,5). The model shows that an epidemic of a
given year was related to epidemics of the previous 4 yr.
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Fig. 2. Epidemic time series of wheat stripe rust (Puccinia striiformis)
in five regions of the northern China pandemic system from 1950 to
1990. Epidemic index description is in Table 2.
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DISCUSSION

Our study showed that the five regions are in one pandemic
system, which is consistent with the previous conclusion from
historical observations (9,12,16). An epidemic of one region was
closely correlated to epidemics of other regions; r increased as
spatial distance decreased. There may be a 4-yr cycle of stripe
rust pandemic in northern China as shown by the common model
(Eq. 2) for the five regions.

Quantitative analysis can effectively outline the spatial pattern
of a pandemic system. In our study, the epidemic index and spatial
correlation coefficients indicated an epidemic gradient in the

TABLE 3. Correlation coefficient matrix of disease epidemics among
the five regions in the northern China pandemic system of wheat stripe
rust (Puccinia striiformis)*

Region
Region Gangu Xian Xinyang Zhengzou Beijing
Gangsu 1.00 0.68 0.68 0.56 0.56
Xian 1.00 0.78 0.74 0.74
Xinyang 1.00 0.67 0.65
Zhengzou 1.00 0.84
Beijing 1.00

"Spatial distances between regions (Fig. 1) are reflected by the relative
positions in the table.
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Fig. 3. Identification results of differenced epidemic time series of wheat
stripe rust ( Puccinia striiformis) for source region Gangu. A, Time series
after first order difference; B, autocorrelation with 95% simultaneous
confidence limits; and C, partial autocorrelation.
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TABLE 4. ARIMA models of wheat stripe rust (Puccinia striiformis) for different regions in the northern China pandemic system

Type of

Region model ARIMA model® WN" AIC*

Beijing (2,2,0) W,=—0.656W,_, + Z, 1.06 6.52
(0.118)°

Zhengzou (2,2,0) W,=—0549W,_,+ Z, 1.08 8.31
(0.131)

Xian (2,2,0) W,=—0.532W,_, + Z, 1.20 16.92
(0.132)

Xinyang (2,2,0) W,=—0.408W, , + Z, 1.04 5.35
(0.143)

Gangu (3,1,0) X,=—0.29X, | — 0.195X,, — 0.41X, s + Z, 1.09 12.64

(0.149)  (0.153) (0.142)

*Model from differenced process. The difference was first order (X, = ¥, — ¥,,) for Gangu and second order (W, = X, — X,_,, or W, = ¥,
—2Y,., + Y,_, for other regions.

*White noise (random).

“ Akaike Information Criterion, which measures the fit of a model.

“Standard errors of regression coefficients.

TABLE 5. Prediction models of wheat stripe rust (Puccinia striiformis) for different regions in the northern China pandemic system

Region Prediction model® Variance
Beijing Y,=2Y,, — 1.656Y,,+ 1.312Y,; — 0.656 Y, + Z, 1.06
Zhengzou Y,=2Y,_,— 1.549Y, , + 1.098Y,_; — 0.549Y,_, + Z, 1.08
Xian Y, =2V, — 1.532Y, , + 1.064Y,, — 0.512¥,_, + Z, 1.20
Xinyang Y,=2Y,, — 1.408Y, , + 0.816Y, ; — 0.408Y,_, + Z, 1.04
Gangu Y,=0.71Y,, +0.10¥,, — 0.215Y,_, + 041 ¥,_, + Z, 1.09

*Obtained by substituting difference models back to ARIMA models.
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Fig. 4. Identification results of differenced epidemic time series of wheat Lag(year) )
stripe rust (Puccinia striiformis) for dispersal region Beijing. A, Time Fig. 5. Autocorrelation of epidemic time series (second order dlff_erence)
series after second order difference; B, autocorrelation with 95% simul- of wheat stripe rust ( Puccinia striiformis) for the regions of Xian, Xinyang,
taneous confidence limits; and C, partial autocorrelation. and Zhengzou. The bands are 95% simultaneous confidence limits.
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northern China pandemic system. This gradient was consistent
with the previous conclusion drawn from historical observations.
Historical surveys show that the Gangu region functions as a
source of inoculum for northern China (9,12). In the fall, uredinio-
spores are carried to the Yellow River Basin by westerly air
currents (12,16). A consistent gradient of rust incidence in early
December was detected from Gangu to the east coast in a 4-
yr survey (S. M. Zeng, unpublished). In our study, the r value
for Gangu-Xian was 0.65, which is greater than the 0.54 for Gangu-
Zhengzou, indicating a distance dependency. The r value for
Beijing-Zhengzou was 0.84 greater than the 0.67 value for Beijing-
Xinyang, indicating that the exogenous inoculum of Beijing may
be dependent on spores from a closer area such as Zhengzou
(12). Zeng (14) demonstrated that interregional disease dispersal
is distance-dependent and can be predicted by an interregional
dispersal model.

Differences in epidemics among regions may reflect geograph-
ical differences. For example, average epidemic indices were 1.93,
1.83, and 0.91 for Xinyang, Zhengzou, and Beijing, respectively.
The southern regions of this pandemic system usually are warm
and moist in spring and are more suitable for stripe rust develop-
ment than northern regions. Geographic differences among the
regions were also reflected in the trends of pandemic records.
The trend for Beijing is steeper than that of other regions, probably
because Beijing is in a very developed area of China, where disease
management is much improved. In contrast, the trend for Gangu
is unremarkable due, perhaps, to a relative slow development
of the region where most farms are in remote, mountainous areas.
Furthermore, the epidemic difference between source region and
dispersal regions was reflected by the ARIMA models identified
as ARIMA(3,1,0) for source region and ARIMA(2,2,0) for dis-
persal regions.

The fluctuation of pandemics can be considered a mixed signal
of periodic oscillations and irregular noise and may be explained
by the following. First, recent studies (3) show that a pathogen-
host interaction can produce very complicated dynamics.
Depending on the extent to which pathogens overwinter, a host-
pathogen population may vary its oscillation from period cycle
to apparently irregular fluctuation (3). The overwintering of the
rust pathogen in different regions varies markedly by year and
may affect spring epidemics. Second, periodic changes in climate
tend to impose oscillations on the internal origin of a biological
system (7), which may result in periodic changes in disease epi-
demics. Third, agricultural activity affects epidemics. Change of
host resistance will drive away the pathogen population dramati-
cally, as was true of the epidemic in 1959 (13). The decrease
of pandemic frequency in the last two decades also demonstrated
the impact of agricultural activity on the disease. Therefore, if
oscillations of the three driving forces are not harmonic, the
epidemic could fluctuate with a great random shock, o> =
1.04-1.20 (Tables 4,5).

We considered a time series model as an alternative to regression
and simulation in searching for patterns in pest development.
Coakley (2) has presented a very good prediction for wheat stripe
rust in the Pacific Northwest (United States) by searching for
disease-favorable patterns in early spring from historical weather
data. A time series prediction model is also a historical pattern.
In comparison, Coakley’s method presents a pattern from
exogenous processes, such as weather variables, and provides a

576 PHYTOPATHOLOGY

short-term prediction. The pattern by time series is from the past
values of epidemic series (endogenous information) and can be
used for long-term prediction. Extrapolation can be done with
a time series model but is inadvisable with a conventional regres-
sion model.

In this paper, we used the models only to detect pandemic
patterns and did not use the model for prediction. Our epidemic
indices were categorical variables and were recorded over years.
Sequential collection of a categorical variable can be taken as
a time series, and an ARIMA model can be developed. However,
an ARIMA model for a categorical variable is approximate in
comparison with a model for a continuous variable. Furthermore,
although the 41-yr data set was very long for plant epidemiology,
the record was short in terms of time series, which is also common
for ecological time series (5). An observation number =50 has
been suggested for a confident conclusion (1). To unambiguously
resolve a cycle component, one must record at least 10 oscillations
(5). With the increase of the length of pandemic record, improve-
ment in reliability of our models is expected; and a long-term
prediction with the models may be possible.
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