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ABSTRACT

Onstad, D. W., and Kornkven, E. A. 1992, Persistence and endemicity of pathogens in plant populations over time and space. Phytopathology

82:561-566.

Endemicity is the persistence or constant presence of a pathogen in
an ecologically proper spatial unit over many generations. We simulated
a simple model over a grid of 8,192 sites to study persistence and the
temporal and spatial dynamics of a hypothetical pathosystem of one
pathogen and one host. Except for possible increase in the number of
leaflets per host, the host population and environment were constant.
Two characteristics of the leaf-infecting pathogen influenced persistence.
As the potential reproduction per pathogen, iR, decreased, the pathogen
was less likely to persist for a given number of generations. The pathogen
was more likely to persist over time measured in days when it had a
longer infection cycle, but persistence time was essentially constant for

all values of latent and infectious periods when time was measured in
generations. Several conditions of the host also influenced endemicity.
Heterogeneity of iR across hosts increased persistence. Higher host
densities and growth of susceptible host tissue increased persistence.
Results do not support the theorem that pathogens are endemic when
iR= 1. Theorems must include spatial scale so they can be tested. Removed
diseased tissue cannot logically be used in theorems as a predictor of
endemicity. Other formulas for predicting the asymptotic disease level
did not predict the results of our simulations, presumably because these
formulas assumed that susceptible host density would be uniformly
distributed and constant.

Because plant pathologists have focused primarily on epidemics,
few have defined or studied endemic diseases. Van der Plank
(13) stated that endemic disease is constantly present. Van der
Plank (13) also claimed that a pathogen is endemic when total
production of offspring per pathogen, iR, equals 1 on average
over time and space. He did not, however, provide temporal and
spatial scales for evaluating persistence and endemicity. Although
Van der Plank’s theorem, iR = 1, assumes that hosts are nonlimit-
ing, his models of disease progress do not make this assumption.
Thus, iR in the theorem is actual reproduction under conditions
that are rarely realistic, whereas iR in his models is potential
reproduction. (Actual reproduction equals potential reproduction
multiplied by the probability of propagule landing on susceptible
tissue.) Zadoks and Schein (16) stated that an endemic disease
is limited to a region with an average value of iR = 1 over the
long term. Under their definition, an endemic disease has an
average level for a region but may periodically increase or decrease.
Zadoks and Schein (16) implied that the smallest time unit for
endemicity is the growing season or host generation time, but
they did not precisely describe an appropriate spatial scale.

Endemicity can be defined as the persistence or constant
presence of a pathogen in an ecologically proper spatial unit over
time. An ecologically proper spatial unit is determined from a
quantitative understanding of the host’s or pathogen’s movement
during its lifetime. Seem (11) also urged that a sampling or spatial
unit be selected carefully and logically. He stated that the unit
should be roughly the size of a typical focus for the pathogen.
The spatial unit should approximate the average area over which
a pathogen as a propagule disperses from the mother source.
In accord with this definition, an endemic disease is neither the
opposite of an epidemic disease nor necessarily usual or common.
The time span for prediction must be included in the concept
and expressed in terms of a series of time units related to the
generation times of the host and pathogen (2). Epidemics of
endemic disease can occur. An epidemic can be identified in a
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single, space-time unit, but persistence is likely to be of interest
over many time units.

Although several plant pathologists have modeled the temporal
and spatial dynamics of real or hypothetical pathogens, pathol-
ogists have not addressed the question of long-term persistence
(6-9). Most often, the emphasis was on the study of dispersal
gradients, focus spread, and disease (not pathogen) progress (17).
Fleming et al (3) demonstrated how host field size and shape
could influence the increase and persistence of pathogens, but
they did not provide a temporal scale in their general conclusions,
and their fields consisted of homogeneously distributed and
nonlimiting susceptible tissue.

Endemicity and persistence of pathogens have not been studied
for several reasons. Most plant pathologists are interested in
protecting crops from economically damaging levels of disease.
Natural systems and long-term population dynamics in agri-
cultural systems are rarely investigated (1). Pathogens are likely
to persist at relatively low levels that do not attract the attention
of scientists.

In this paper, we investigate the persistence of pathogens in
host populations that may or may not be uniformly distributed
in space. We computed a numerical model to study the qualitative
behavior of a hypothetical pathosystem. A numerical model was
used instead of an analytical model because of the complexity
of the problem (10).

MATERIALS AND METHODS

The pathosystem described below is similar to the basic systems
studied by Van der Plank (12,13) and Zadoks (15). It has one
host species and one strain of pathogen that infects the host’s
leaves. The host’s phenology does not influence its interaction
with the pathogen, and the pathogen cannot kill the host. Climatic
and seasonal variations in the environment do not affect the
generation time of the host. Essentially, for this scenario, the
host is stable, except for possible increase in the number of leaflets,
for the complete period of analysis. The system is similar to a
community of perennial evergreen tropical plants.
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The pathosystem can be expressed with four differential equa-
tions. In these equations, S represents susceptible host tissue
(leaflets per plant site); N symbolizes total host tissue (leaflets
per plant site); and L, I, and D are the densities of leaflets with
latent, infectious, and removed lesions, respectively. The density
of infected but not yet infectious lesions is L. For simplicity,
we assume that a lesion covers a single small leaflet by the end
of the latent period.

dL,/dt= RI(S,/N,)— L,/p (1)
dljdt= LJp—I]i (2)
dD,/dt= I]i 3)
dS,/dt=b— RIL(S,/N,) 4)

with RI,(S,/ N,) = S. The average latent period is p, the average
infectious period is i, and the host growth rate is . Both periods
are expressed in days. R is the potential reproductive rate in
terms of new inoculum per infectious lesion per day. If this
inoculum lands on susceptible tissue, then it will produce infected
leaflets or latent lesions.

Equation 1 describes the increase in latent lesions due to
reproduction and the decrease due to maturation. On the average,
a new lesion requires p days to completely cover its leaflet. In
Equation 2, infectious leaflets are increased by maturation from
the latent stage and decreased by the rate of removal or devel-
opment out of the stage. Equation 4 describes host growth and
infection. For host growth rate, b > 0, new susceptible leaflets
are produced each day; for b = 0, N is constant. The second
term in Equation 4 is the effective rate of infection or successful
reproduction by the pathogen. Because N equals S + L + I+
D, S/N is equivalent to 1 — (L + I + D)/N. The variable L
is part of the infected tissue that reduces reproduction, because
when two or more propagules land on a latent leaflet, the leaflet
will still be completely covered p days after germination of the
first propagule.

As an extension of traditional approaches (12,13), we have
added an equation for calculating the density of susceptible host
tissue. This density is usually not explicitly modeled for two
reasons. First, it is assumed that susceptible host tissue is not
limiting during early stages of disease increase (13,16). Second,
total leaflet density N is assumed constant, a reasonable assump-
tion in mature and very dense crop monocultures. Zadoks (6,15)
considered including host growth in his simulation models, but
he did not perform an analysis of the models with this feature.
In Equation 4, we assumed that N could either be constant or
could increase at a constant rate b. More complicated rates of
increase could be used, including the negative effects of disease,
but our emphasis is not on host growth. At N = 50 in the model,
no bare soil is exposed for propagules to fall onto; after this
state, the plant grows up, not out. Thus, propagules are lost only
when they land on nonhost sites or on tissue that is not susceptible.

To model the dynamics of the pathogen in space, we assigned
the four variables calculated by Equations 1-4 to each site in
a very large two-dimensional grid. Some or all of the sites may
be occupied by a host plant. Thus, the distribution of hosts is
not necessarily uniform. Inoculum is dispersed among plants by
assigning one-fifth of RJ, calculated at site j, to site j, and one-
tenth to each of the eight adjacent sites. Propagules landing on
nonhost sites are lost. Inoculum landing on host plants survives
and germinates with probability S;/N, for plant k. Equations
1 and 4 are transformed into

8
dLy|dt = 0.2RIASy/ N) + X 0.1RIL(S,/Ny) = Lylp (5)

8
dSyldt=b— 0.2R[,(S,;/ N —uéa 0.1RI(S,/ N, (6)
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Hosts on the edge of the grid communicate with and are assumed
to be adjacent to the sites on the opposite edge. No inoculum
is dispersed out of the region.

In Equations 1, 4, 5, and 6, the relative density of susceptible
leaflets, S/ N, is used to represent the probability of survival and
germination during dispersal and infection. As Van der Plank
(12) mentioned, the use of S/N in a single equation model is
correct only if the susceptible hosts are homogeneous throughout
a field. The use of absolute density is important when the plant
canopy does not provide a uniform and complete cover of the
land, such as in young crops and natural habitats, or when non-host
species are abundant. We modeled the absolute density of hosts
by changing the total density for the entire region.

Figure 1 provides two perspectives on the spatial structure of
the model. Figure 1A shows the relationship between an initially
infected host and its eight neighbors. The area of influence from
this centralized host can be thought of as a unit of nine, although
less than nine hosts may occupy the unit. This neighborhood
is the ecologically proper spatial unit for this study. Figure 1B
represents a small portion of the region of sites simulated with
the model. The small rectangles are units of nine. The assignment
of these units to the sites does not influence the model processes,
is used only for analysis of results, and is arbitrary (like any
other sample unit or quadrat).

The model was programmed in FORTRAN and computed on
the Connection Machine 2 at the National Center for Super-
computing Applications at the University of Illinois. This
massively parallel computer has 32,768 processors, but we only
used one-fourth of the machine. The 8,192 processors used were
modeled as a 64 X 128 grid of plant sites. This grid permitted
amaximum of 882 units of nine sites to be studied. Each simulation
of 1,000 daily time steps with Euler integration required 2 min
on the computer.

We studied pathogen persistence over 1,000 days by varying
absolute host density in the region, relative and absolute

A

Fig. 1. Two perspectives of simulated spatial dynamics. A, Unit of nine
sites occupied by hosts with pathogen dispersal from center source of

inoculum. B, Portion of region of 8,192 hosts that shows grid and
assignment of units.



susceptible leaflet densities per host, latent and infectious periods,
and the distribution of iR values across hosts (Table 1). Host
density was either 8,192 in a uniform distribution or 3,000 in
a random distribution (with four replications). Fach host site
started with Ny; = 50, Ly; = 3, and Iy; = 2. For simulations
of 8,192 hosts, half of the computations were made with no host
growth (b = 0), and half were made with growth b = 0.5, causing
the relative (S/N) and absolute leaflet densities to increase. All
simulations of 3,000 hosts used & = 0.5.

Latent period p and infectious period i were 2, 10, or 20 days.
All nine combinations of i and p were used in the simulations
of 8,192 hosts, whereas only three combinations (2,2), (10,10),
and (20,20) were used to study 3,000 hosts. For simulations of
8,192 hosts in a uniform region, one scenario used half of the
hosts with iR = 0.8 and half with iR = 1.2; thus, the average
value was iR = 1 at the start. This randomization was replicated
four times. In another scenario with the 8,192 hosts, all had iR
= 1. The distribution of iR was uniform in all simulations of
3,000 hosts either with iR = 1 or with iR = 2.3. Based on a
simple calculation, we assumed that 2.3 was the average reproduc-
tion needed to break even when 3,000 out of 8,192 sites are
occupied, and 20% of the propagules remain on the mother
pathogen’s host in a unit of nine neighbors.

We attempted to answer the following questions. Does the
pathogen persist in the region for 1,000 time steps? Does the
pathogen persist in all units of nine host sites? Is the period of
persistence a constant number of days or a constant number of
pathogen generations? Is persistence influenced by p or ? Does
heterogeneity of iR affect persistence? Do host densities and host
growth influence persistence? Which variables can or cannot be
used as indicators of persistence?

We measured a variety of variables to avoid the problem of
relying on only one variable for the identification of relationships
(2). We analyzed regional counts of hosts with densities of I,
L, and D greater than one-thousandth of a leaflet and counts
of units of nine containing at least one host with 107 leaflets
of I, L, and D. Because the differential equations produce
continuous variables that may be very small fractions of leaflets,
we used this threshold of 107 to identify infected or removed
leaflets, but values in the model were unaffected. Other variables
were the sums of leaflets S, L + I, L + I + D, I + D, for
the entire region.

RESULTS

The general pattern, with few exceptions, in the changes in
pathogen density was a continuous decline from the initial density
to a much lower value (Figs. 2,3). A similar pattern of decline
was observed for the changes in the number of hosts and units
of nine with infection. As results described below indicate, no
more than 40% of the leaflets in the region were diseased during
the simulation. Thus, susceptible tissue was always available even
without host growth. We inferred that the pathogen declined to
extinction in the region when its actual rate of reproduction
dropped below the necessary replacement level.

In the region of 8,192 uniformly distributed nongrowing hosts
(b = 0), the pathogen represented by L or I never persisted for

TABLE 1. Initial conditions, parameter values, and replications for all
of the simulations

Initial Initial

host density of Growth Latent (p) and Repli-
density  infecteds rate b infectious (i) periods iR  cations
8,192 8,192 0,0.5 Nine® 1 1
8,192 8,192 0,0.5 Nine 1° 4
3,000 3,000 0.5 Three 1,2.3 4

*Nine combinations consist of all combinations of i = 2, 10, or 20 days
and p = 2, 10, or 20 days. Three combinations of ip are (2,2), (10,10),
and (20,20).

PMean of half of hosts assigned iR = 0.8 and half iR = 1.2,

all 1,000 days (Table 2). Latent and infectious leaflets disappeared
from the region by day 78 when i and p equaled 2 and by day
822 when they both equaled 20. As the sum of i and p (the infection
cycle) increased, the duration of persistence in terms of days
increased greatly. The pathogen disappeared approximately 20
cycles (i + p) after the start of the simulation. The extinction
dates were earlier under the homogeneous distribution of iR than
they were under the heterogeneous distribution.

The asymptotic proportion of diseased (i.e., equals removed
at the asymptote) leaflets in the region of 8,192 nongrowing hosts
was generally 0.39 for the homogeneous distribution of iR and
0.40 + 0.00006 for the heterogeneous distribution. With all hosts
having iR = 1 and both i and p equal to 2, the final proportion
was 0.40.

When the 8,192 hosts were allowed to grow (b = 0.5), the
pathogen persisted for the 1,000 days in most cases. For p + i
= 20, the pathogen persisted at the regional scale and in all 882
units of nine hosts for both distributions of iR. Persistence within
the region or a single unit does not require persistence on all
hosts within that spatial unit. With iR = 1 in a homogeneous
distribution, the pathogen did not persist as latents or infectants
when p + i was 12 or less (i.e., three cases). For iR distributed
heterogeneously with two values, the pathogen only disappeared
from the region when both p and i were 2 days. For p = 10
and i = 2, the numbers of infected hosts and units were 5,885
+ 80 and 740 £ 11, respectively, on day 1,000 with the heter-
ogeneous distribution. The values dropped to 0 by day 818 for
the homogeneous distribution. Similar results in both cases were
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Fig. 2. Density of infected leaves (L + /) in the field of 8,192 uniformly

distributed hosts with no growth (b = 0.0, —) or with growth of new

leaves (b = 0.5, - - -). Simulations had constant iR = 1.0 and latent

and infectious periods of 20 days.
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(- - -). Simulations had b = 0.5 and latent and infectious periods of
20 days.
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computed with p =2 and i = 10. Thus, with = 0.5, heterogeneity
in the distribution of iR enhanced persistence just as it delayed
extinction with b = 0.

Table 3 shows how the number of infected leaflets and propor-
tion of diseased leaflets on day 1,000 increased as p + i increased.
When infected leaflets (L + I) persisted, the proportion or density
of diseased leaflets did not reach an asymptote. Thus, diseased
tissue reached an asymptote only when p = i = 2 (Table 3).
The density of susceptible leaflets on day 1,000 declined as p + i
increased for both scenarios of iR: 4,328,894 (p = 2 = i) to
4,192,809 (p = 20 = i) for iR = 1, and 4,326,944 £ 52 (p =
2 =) to 4,173,292 + 916 (p = 20 = i) for iR = 0.8 or 1.2.
As the cycle length (p + i) increased, the density of infected
leaflets and the proportion of diseased leaflets in the region on
day 1,000 increased. In general, with host growth, cumulative
disease (L + I + D) is smaller as a proportion but larger as
a density compared to the case without host growth. For example,
with b = 0, the maximum density of diseased leaflets was 162,000
for the region; with » = 0.5, the maximum was 333,000.

Persistence was less likely to occur when host density decreased
from 8,192 to 3,000. With 3,000 randomly distributed and
constantly growing hosts with iR = 1, the pathogen persisted
at the regional scale only when the latent and infectious periods
were both 20 days (Table 4). The pathogen persisted in less than
two out of 867 units of nine. When all 3,000 hosts had iR =
2.3, regional persistence in terms of L and / occurred in all cases
(Table 4). The pathogen, however, did not remain endemic in
all units of nine. For example, when both p and i equaled 2
days, counts of plants and units with positive densities of I and
L declined during the first 190 days to a mean value of 370 and
then increased to the counts shown in Table 4. In general,
increasing the value of iR increased the likelihood of persistence.
Dead or removed tissue always persisted at either spatial scale.
No asymptotic disease level occurred when the pathogen persisted.

DISCUSSION

In this study, we attempted to explain persistence of pathogens
by using a nonequilibrium model of population dynamics.
Equilibrium models identify stable scenarios of host and pathogen
that last forever (10). Persistence must be measured in a finite
amount of time to be able to test and develop hypotheses. Popu-
lation genetics may be important for understanding persistence,
but results of this study indicate that persistence may be at least
partially due to typical nonevolutionary population dynamics.
In our simulations, the pathogen population declines and
eventually disappears or becomes extinct from a spatial unit,
unless new susceptible tissue is produced in the spatial unit. Host
growth with the formation of new leaflets is the mechanism by

TABLE 2. First days on which number of infected hosts declined to
zero during simulations of 8,192 nongrowing hosts initially infected with
either iR = 1 for all hosts (one replication) or iR = 0.8 for half and
iR = 1.2 for the other half (four replications)

iR=1 iR=08or1.2
Periods® Hosts with Hosts with Hosts with Hosts with
(p.i) latents infectants latents infectants
2.2 75° 77 76 £ 0° 780
2,10 259 215 263+ 0 221 +0
10,2 207 264 21210 269 =0
10, 10 390 401 398 + 0.6 409+ 0
2,20 492 371 5010 382+ 0.6
20,2 354 502 364 £ 0 511 £0.5
10, 20 617 580 628 £ 0 59210
20, 10 560 631 5731+ 0.6 643+ 0
20, 20 784 806 800 £ 0.6 822+ 0

"Latent period is p; infectious period is /.

"Day on which count of hosts decreased to zero based on threshold of
107? leaflets per host.

“Standard deviation.
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which susceptible tissue is added to our hypothetical pathosystem.
Other factors like the value of iR, its heterogeneity, and host
density only influence the time required for the pathogen to decline
to 0 in the spatial unit.

When Van der Plank (13) and Zadoks and Schein (16) analyzed
the population dynamics of disease with a simpler model, they
concluded that endemic disease has iR = 1 on average. Our results
indicate that the value of iR by itself is not enough to predict
whether a pathogen will persist or not. In some cases, when iR = 1
as a constant or an average, the pathogen did not persist (Tables
2 and 4), The assumption of Van der Plank (13) and probably
of Zadoks and Schein (16) was that the susceptible host population
was not limiting. We agree with Jeger (5), who concluded that
neither a constant low value of iR nor a low level of disease
is sufficient for defining endemic disease.

Each 1,000-day simulation lasted at least 25 infection cycles
equal to p + i days. Time can also be expressed in terms of
pathogen generation time. According to Burdon and Chilvers
(2), the appropriate temporal scale for this type of study has
a basic unit related to the reproductive cycles of the host and
pathogen. Van der Plank (12,13) defined the latent period as
the generation time for the pathogen. Zadoks and Schein (16)
considered the infection cycle to be the basic temporal unit for
plant epidemiology. For species with overlapping generations,
the median age for reproduction can be used as a measure of
generation time. Given that 1/i infectious leaflets are removed
each day and that the reproductive rate, R, is constant in each
simulation, the ages at which half the reproduction has occurred
in a cohort are p + 1, p + 7, and p + 14 days for i equal to
2, 10, and 20 days, respectively. The hypothetical pathogen in
this study persisted for approximately 20 infection cycles or 23.5
generations before disappearing in the region of 8,192 nongrowing
hosts (Table 2). Because the product of the effective reproductive
rate, R(S/N), multiplied by 7 is less than | throughout all the
simulations reported in Table 2 (because S/ N < 1), the population
of infecteds declined during the infectious periods of every
generation or cycle. Of course, a latent period must be passed
through before each reproductive period is reached. Thus,
generation time is an appropriate temporal unit for analyzing
endemicity.

The choice of spatial scale for the analysis determines whether
the pathogen was persistent. The smallest spatial unit for the
analysis of pathogen population dynamics should be based on

TABLE 3. Number of infected (latent and infectious) leaflets and
proportion of diseased leaflets (latent, infectious, and removed) on day
1,000 for simulations of 8,192 growing hosts initially infected with either
iR = 1 for all hosts (one replication) or iR = 0.8 for half and iR =
1.2 for the other half (four replications)

iR=1 iR=08o0r12

Periods® Infected Proportion Infected Proportion
(p.i) leaflets diseased leaflets diseased
2,2 0.0 0.04° 0.0 £ 0.0° 0.04°
2,10 4.4° 0.05 2+25 0.05
10,2 4.4° 0.05 21 +24 0.05
10, 10 134 0.05 274 1 12 0.06
2,20 244 0.06 446 + 16 0.06
20, 2 250 0.06 449 + 16 0.06
10, 20 924 0.06 1,368 £ 29 0.07
20, 10 940 0.06 1,383 £+ 29 0.07
20, 20 2,613 0.07 3,437 £ 48 0.07

"Latent period is p; infectious period is i.

"Total density of leaflets on day 1,000 with Ny = 50 and b = 0.5 is
4,505,600.

“Standard deviation.

“Standard deviation based on four replications monotonically increased
from 0.00001 for p and i equal to 2 days to 0.00020 for p and i equal
to 20 days.

“Although 4.4 infected leaflets remained on day 1,000, the number per
host was less than the 10~ minimum level for counting hosts after dividing
by 8,192.



TABLE 4. Results of simulations of 3,000 growing hosts, which were initially infected with iR = 1.0 or iR = 2.3

Number of plants with®

Number of units of nine with®

Periods® Removals or
(p.i) Latents Infectants Removals Latents Infectants suscepts
iR=1.0
2,2 day70 £ 3 day72+3 3,000+ 0 day 70 £ 3 day 72 + 3 867 L5
10, 10 day 456 £ 32 day 467 £ 32 3,000 £0 day 456 + 32 day 467 * 32 867t 5
20, 20 35+5 58+6 3,000 £0 1L.3x1 1.8+2 867+5
iR=23
2,2 2,617 £ 42¢ 2,617 + 42¢ 3,000+ 0 759 + 17¢ 759 £ 17° 867t 5
10, 10 2,774+ 13 2,774 £ 13 3,000+ 0 799+ 8 799+ 8 867+ 5
20, 20 2,868 £+ 13 2,868 + 13 3,000 £ 0 825+ 9 825+ 9 867 = 5

*Latent period is p; infectious period is i.
®Number of hosts with values of L (latents), I (infectants), or D (removals) > 10~ on day 1,000, which normally has lowest value. If value is

0, the date on which it went to 0 is given. Means and standard deviations are based on four replications.

“Number of units with at least one host having values of L (latents), / (infectants), D (removals), or S (suscepts) > 107* on day 1,000. Values

for § and D were equal.

“Lowest values actually occurred about day 190. Lowest number of units of nine was 370 + 31.

the dispersal function. For this study, the fundamental unit is
the unit of nine. Sometimes the pathogen was not endemic during
the 1,000 days in all units (Table 4). When the pathogen dis-
appeared from a single unit, it persisted in the region by remaining
endemic in other units. Spatial dynamics among units may keep
the pathogen endemic at the regional scale. A future study should
investigate how plant and leaflet densities influence the dynamics
within each unit of nine.

The region of 8,192 sites could be considered a heterogeneous
region of fields with N hosts at each site. Dispersal would be
from a central field to the adjacent eight fields, and R would
be the reproductive rate per infectious plant, not infectious leaflet.
The conclusions described below are valid at any given absolute
area of space (i.e., field or region of fields) as long as the spatial
unit relative to dispersal is maintained,

Two characteristics of the pathogen influenced persistence. We
conclude that as iR decreases, a pathogen is less likely to persist
for a given number of generations (persistence time will be less).
We also hypothesize that a pathogen is more likely to persist
over a given number of days when it has a longer generation
time and total reproduction per pathogen iR is held constant.
In terms of pathogen generation time, the period of persistence
was fairly constant. With iR constant, the longer generation times
slow down any decline in the pathogen population. If R, but
not iR, was held constant, total reproduction would be less for
shorter infectious periods, and the ratio of p to i would be
important.

Conditions of the host that influenced endemicity were increase
in the number of leaflets per host, host plant density, and
heterogeneity of iR. We hypothesize that heterogeneity of iR due
to mixtures of cultivars will always increase persistence relative
to a crop monoculture with the average iR. Another hypothesis
is that smaller host densities decrease persistence over a given
number of pathogen generations. No host-density threshold was
observed. A final postulate is that continuous growth of
susceptible host tissue increases the probability of persistence.
This conclusion reminds us that the population dynamics and
growth of the host are important in the long-term analysis of
a pathogen.

As expected, dead or removed leaflets persisted in the region
and in all the units under all scenarios. Variables that do not
distinguish between infected and diseased tissue are not useful
predictors of population dynamics in epidemiology. From a
population dynamics perspective, predictions must be based on
observations of infecteds (latents and infectants) and susceptibles.
If dead or removed tissue is included in the measurement of the
pathogen, then the total amount of diseased tissue will never
decline (3).

Because confusion in the use of the terms diseased and infected
exists, precise definitions are needed. The sum of L, I, and D
equals the single variable used by Van der Plank (12,13) in most

of his models and formulas. Van der Plank (12,13) generally
defined epidemics in terms of all diseased tissue. Zadoks (15)
calculated all three variables, but implied that an epidemic should
be measured by the sum of I and D, severity of the disease.
Most plant pathologists have not questioned the use of removed
lesions in the measurement of pathogen population dynamics (4).
In zoological epidemiology, removals are assumed to be dead
or immune animals, not diseased individuals or parts of indi-
viduals. The animal systems are similar to plant systems with
systemic viral diseases that infect a whole plant. Dead or removed
lesions are important in crop loss assessment, but they are not
useful in the measurement of pathogen population dynamics.

Van der Plank (14) postulated that the formula Q@ = 1 —
Cexp(—iRQ) describes the asymptotic proportion of diseased
tissue Q, with C= 1 — g,. The variable g, is the initial proportion
of tissue that is diseased (latent, infected, or removed). Van der
Plank’s formula calculates 0.40 as the asymptote when iR = 1
and g, = 0.1. Jeger (5) used a similar formula, except that C =
(I — go)exp(qo). With gy = 0.1, C = 0.9947, and iR = 1, Jeger’s
version of the formula calculated a value of 0.1. Thus, when
8,192 nongrowing, uniformly distributed hosts are considered,
Van der Plank’s formula-based prediction matched our results,
but Jeger’s did not. When host growth or spatial heterogeneity
was included in our model, our results were different from those
of both formulas. Host growth complicates the comparison
between simulated and formula-based predictions, because neither
formula (5,14) considers that growth and asymptotes were rarely
reached in the simulations because of host growth. However, with
p=1i=2and iR = 1, the simulated asymptote is 0.04 (Table 3)
or 0.02 for 8,192 or 3,000 growing hosts, respectively. These values
are less than the values of 0.10 and 0.40 derived from the formulas
of Jeger (5) and Van der Plank (14), respectively.

Future theoretical work concerning pathogen persistence can
take several directions. The assumptions about the host population
could be changed. A host with an annual growth cycle could
be simulated. If the effect of disease on host reproduction and
mortality was modeled, then the community dynamics of both
species could be studied over many host and pathogen generations.
Another subject that should be explored in more detail is the
heterogeneity of host distribution. Various distributions of density
or iR could be evaluated by using techniques similar to those
of Mundt and Leonard (8) and Mundt et al (9). Other forms
of the dispersal function must also be studied. Shallower gradients
would permit the pathogen to spread to more neighbors around
a given host. Finally, hypotheses should be developed from several
kinds of models and tested against independent field data.
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