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ABSTRACT

Milgroom, M. G. 1990. A stochastic model for the initial occurrence and development of fungicide resistance in plant pathogen populations.

Phytopathology 80:410-416.

A stochastic model was developed to relate pathogen population size,
the probability of fungicide-resistant individuals (R) occurring, and the
strength of selection for resistance (fungicide efficacy). The model is based
on binomial probabilities that R individuals are present in the initial
population of size N, or occur during an epidemic after selective fungicide
is applied. If an R mutant occurs early in the epidemic, the final frequency
(g,) and number of R (Np) increase to higher levels than if the mutation
occurs later. The probability of ¢, reaching some given value is always

higher when N, the pathogen growth rate (r), or mutation rate to resistance
(p) is large. The effects of fungicide efficacy (1 — «) depend on the other
parameters. When N, is small, high values of I — & result in lower
probabilities of R occurring. As N increases, this trend is reversed. These
results suggest that intensive use of fungicides may be a rational means
of resistance management when population sizes are initially small.
However, caution must be employed in applying these results to real
systems.

Three epidemiological principles that describe the dynamics
of resistance buildup in pathogen populations recently have been
summarized (15). These principles are that the frequency of
resistance will build up more slowly if the initial frequency of
resistance is reduced, the apparent infection rates of both
fungicide-resistant and fungicide-sensitive genotypes (rp and rg,
respectively) are reduced, and ry is reduced relative to rg. Most
discussion of management tactics has focused on reducing
apparent infection rates (15). Reduction of initial frequency has
received less attention because little can be done to affect the
frequency of resistance before a selective fungicide is used. Initial
frequency is a function of random effects (9), mutation rates,
and the fitness of resistant mutants (16), none of which can be
affected directly by management tactics.

However, the interaction of population size and the rare
occurrence of resistant mutants offer a management approach
that may be useful in some circumstances. One way that initial
frequency can be managed to some degree is to keep the population
size so small that the probability of a resistant mutant occurring
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in that population is very low (8). Conceptually, the influence
of population size on resistance is similar to the influence of
population size on the probability of occurrence of particular
pathogenic races (2,9). The size of pathogen populations has been
identified as an important factor to consider in designing fungicide
resistance management strategies (4,13). The recommendation not
to use acylalanine fungicides in a curative manner (20,21) may
have been derived from this reasoning; it was after curative use
of metalaxyl on large pathogen populations that resistance first
appeared (see 20).

If resistance is more likely to occur in a large rather than a
small population, a potential strategy for fungicide resistance
management is to keep the population size small by using a
selective fungicide intensively (and extensively). This strategy has
been used for management of resistance to metalaxyl in
Peronospora tabacina Adam (which causes tobacco blue mold)
and Bremia lactucae Regel (which causes lettuce downy mildew)
(4,5,17). Crute (4) claimed that the appearance of metalaxyl
resistance in Bremia probably was delayed because of the extensive
use of metalaxyl throughout lettuce-growing areas of the United
Kingdom. Similarly, there have not been any reports of metalaxyl



resistance in P. tabacina in the United States where metalaxyl
has been used in this way (17). This approach initially appears
contrary to conventional thinking and contrary to strategies that
limit the number of fungicide applications (13,15,21). Intensive
use of selective fungicide is appropriate only if resistant mutants
are not present. Otherwise, intensive use of fungicides will select
rapidly for resistance. However, intensive use strategies may be
worth considering if the risks of occurrence and buildup of
resistance can be evaluated adequately. An evaluation of these
risks requires an understanding of the relationships among
population size, probability of resistance occurring, and the
strength of selection.

Current theory for fungicide resistance dynamics does not
accommodate the fact that sometimes no resistant individuals
are present in a population. Theoretical models for fungicide
resistance (3,6,10-12,15), which are based almost exclusively on
selection, will make qualitatively incorrect predictions for small
populations in which resistant mutants are not present. All of
these models assume that resistance is initially at some low
frequency greater than zero (ranging from 107 to 10 %), and
they predict the increase in the frequency of resistance when
selective fungicides are applied. If no resistant individuals are
present, then the frequency of resistance cannot increase regardless
of the potential strength of selection. However, even if there are
no resistant individuals initially present, they might arise de novo
during an epidemic by mutation as new individuals are added
to the population. Again, the probability that a resistant mutant
arises increases as the population size increases. To evaluate the
importance of population size to the dynamics of fungicide
resistance, the probability of resistance occurring, both initially
and subsequently by mutation during an epidemic, must be
incorporated into selection models.

The objectives of this report are twofold. First, I identify the
relationships among population size, the probability of the
occurrence of resistance, and selection. Second, I use the theory
to evaluate the risks associated with intensive fungicide use as
a resistance management strategy. I evaluate this strategy for both
single- and multi-season management situations.

MODEL DEVELOPMENT

In this model, “individual” refers to a genetically homogeneous,
single lesion. Mutations to resistance are assumed to occur only
in the formation of inoculum before infection. For simplicity,
there are only two phenotypes (or genotypes): resistant (R) and
sensitive (S). Assume that each individual in a population of size
Nis independent and fungicide resistant with probability p, where
p is the mutation rate to resistance. It is reasonable to assume
that the number of resistant individuals, N, has a binomial
distribution with parameters N and p, and, therefore,

P — — (N) " = N=n —_

r{Np = n} ndp'(1—p) n=0,1,2,.. (1)

0<p<i

where Pr {Np = n} denotes the probability that the random
variable Nj takes the value n. Therefore, the probability that
resistant individuals are not present in a population of size N
is:

Pr{Ng=0}=(1—p)'~e™ ®

The approximation, ¢, is valid when N is “large” and p
is “small,” as might be expected for plant pathogen populations.
The probability that resistant individuals are not present may
be high, especially when N and p are both small (8). This model
(equation 2) has limited utility: It can only give the probability
that » resistant individuals are present.

A more valuable model is one that predicts the probability
that the frequency or number of resistant individuals will increase
to unacceptable levels due to selection by fungicide use during
an epidemic. Such a model must include population growth for

the sensitive and resistant types. Suppose the population is
growing such that

NJ:NI I(|+” (3)

where N, is the number of individuals at time 7, and r is the
average number of offspring per individual, per time unit.
Equation 3 can be solved recursively to give:

Ne=Ny(l +r) (4)

where N, is the initial population size (at time 0). This same
growth model applies to the sensitive and resistant types in the
absence of selective fungicides. When a selective fungicide is used,
assume that r is reduced to ar (0 < a < 1) for the sensitive
type; | — « represents a measure of average fungicide efficacy
during an epidemic, Fungicide efficacy is assumed to be a function
of both dose and number of applications, in addition to the
inherent nature of the chemical applied. The parameter « is also
a measure of selection; that is, when e is small, sensitive individuals
are inhibited more, and, therefore, selection for resistance is
stronger (see 15). The growth equations for both types when a
selective fungicide is applied are:

Ny = Ngo (1 +r)
Ng,= Ngo (1 + ar)' (5)

where Ng and Nj are the numbers of § and R individuals,
respectively.

From equation 5, we can solve for g,, the frequency of the
resistant type at time f:

However, unless a resistant mutant is present in the initial
population, this frequency will equal zero until a mutant occurs
sometime during an epidemic. If a single mutation occurs at time
x, then selection will operate on the population from time x until
some time ¢. The R subpopulation will increase from Np, =
I 'to Ng, = (I + r)"* at time +. Substituting for Ny, and Ny,
in equation 6 yields:

0 fort<<x

(14
q,= (7)
No(1 4 ar) + (1 +r)* for t = x

assuming that all individuals in the initial population, N,, are
sensitive. To correct for the loss of a single S individual by
mutation to R, (1 + ar)" " must be subtracted from Ng,. The
corrected frequency for R is:

g = d+a fort=x (8)

[Mo(l+ar) =+ ar) T+ + 1)

The importance of this correction is greatest when No is small,

To link this population growth and selection model (equations
5 and 8) to the probability of R occurring requires the prediction
of the first occurrence of R in a population during an epidemic.
This is done with the following reasoning. The probability that
no R individuals occur by mutation in any given time interval
(from equation 2) is:

Pr{No Roccursin(t — I, )} =e *"'forr=12,.. (9)

where AN, = N, — N,_|, the number of new individuals added
to the population in the interval (+ — 1, ¢). It is assumed that
mutations to resistance occur only in new individuals added to
the population, which are independent and have an equal
probability of mutating to resistance (thus satisfying the
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requirements for equation 1). Let the random variable X be the
time at which a resistant type first occurs in the population, The
probability that R first occurs at time x equals the probability
that no R occurred before x, multiplied by the probability that

R occurred in the interval (x — 1, x). Thus,
Prix=x}=e "1l =™ MN0] forx=12,.. (10)
This is similar to a geometric distribution except that the
probability that R occurs changes in each time interval as the
population increases. Substituting for N, and N, from equation

5, we obtain:

Pr {X= X} - e-—p}\h(H’nrJ"'_' [l facs e—pa\’oll-i-m}x_!ar]

(1n

forx=1.2,...1

N, and g, are functions of the random variable X. Therefore,
their expected values are:

E[Ng(X)1= % Np,(x) Pr{X=x) (12)
Elq(X)1= % q,(x) Pr(X =x} (13)

which can be calculated from the definition of Ny, and equations
7 and 11. Expected values are the average outcomes that would
be observed if the process were repeated many times.

MODEL RESULTS AND INTERPRETATION

The number and frequency of fungicide-resistant individuals
in a population that is under selection depend on the time the
first R mutant appears. If there is a single R individual at the
start of the epidemic, then at time ¢, N will be (1 + r)’ regardless
of the initial population size (assuming no density dependence).
If R does not arise until some time x after the epidemic begins,
Ny will be smaller, that is, (1 + ). Similarly, the frequency
of R at time ¢, g, will be greater when R occurs early (small
x) (Fig. 1). In contrast to N, however, g, depends on the initial
population size, Ny,. When the same absolute numbers of R
individuals are found with larger numbers of § individuals, ¢,
is smaller (Fig. 1).

This model can be used in at least three ways to understand
the dynamics of fungicide resistance. First, it is possible to
determine the probability of observing resistance at some given
level at the end of an epidemic. Second, the expected outcomes
can be found for the number and frequency of resistant individuals.
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Fig. 1. The final frequency of fungicide resistance (g,) at the end of a
100-day epidemic as a function of the time (x) the first resistant (R)
mutant occurs for four initial population sizes (Np). These curves were
generated using equation 8 (see text). Parameter values for these curves
were p = 107% r = 0.2, and | — « = 0.9. The dotted lines illustrate
an example described in the text.
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Finally, this model can be used for analyzing multiple-year
dynamics in addition to single seasons.

Probability of resistance development. The first application of
this model is to find the probability that the frequency of R,
q,, reaches some given level or greater (for example, a detection
threshold). Because g, is a function of the time an R mutant
first occurs, X (equation 8), and g, decreases as X increases (for
a given Ny, Fig. 1), then we need to find the probability that
X is small enough to result in a value of ¢, greater than or equal
to the level of interest. More formally, if we want to know
Pr {q, = g*}, where g¢* is some threshold frequency, then we
need to find Pr {X =< x*}, where x* is the time that an R mutant
must first occur to result in the frequency g*. In general,

Prig.=q*}=Pr{X<x*=1—¢ "+ >i:'I PriX=x} (14)

where 1 — ¢ ™” is Pr {X = 0} and Pr {X = x} is found from
equation 11. This cumulative probability is higher for larger values
of N, (Fig. 2).

To use this probability, consider a simple example. If we want
to find the probability that g, reaches 0.50 or greater, when N,
= 10° (with p = 107% r = 0.20, and &« = 0.1), we see, from
Figure 1, that x must be 25 or less. From Figure 2, we can see
that Pr{X = 25}is 0.15 when N, = 10°. Therefore, the probability
that g, reaches a frequency of 0.5 or greater is 0.15 for the
parameter values in this example. The probability that g, reaches
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Fig. 2. The cumulative probability that a resistant mutant occurs on or

before day x (Pr {X =< x}) during a 100-day epidemic, for three initial

population sizes (Ny). Parameter values are p = 10°%r=02,1—a

= ().9. The dotted lines illustrate an example described in the text.

10°  16° 10" 10 10% 16" 10

q*
Fig. 3. The probability that the final frequency of fungicide resistance
(g,) reaches some given level (g*) or greater by the end of a 100-day
epidemic (Pr {g, = q*}). Probabilities are shown for three initial population
sizes (N,) plotted against g* on a log scale; the curve for Ny = 10° is

too close to zero to show on this graph. Parameter values are p = 107°,
r=021—a=009.



g* or greater can be shown directly by plotting Pr {X < x*}
(which equals Pr {g, = g*}, equation 14) against ¢* (Fig. 3).
The probability that g, reaches g* or greater is always lower
when N is smaller (Fig. 3). This is because the probability of
mutants arising early in an epidemic is much lower in small
populations (Fig. 2), and therefore the final frequency is less likely
to increase as much.

The effects of fungicide efficacy, 1 — « (and, hence, selection),
are less intuitive than those for N,. When 1 — « is large (highly
effective fungicide on § subpopulation), the population is kept
smaller than when | — « is small; therefore, R mutants are less
likely to arise (equation 2). However, if an R mutant arises, large
values of 1 — o mean that selection is more intense, and the
frequency of R will increase more rapidly than if 1 — « is small
(equation 8). Therefore, the probability that ¢, reaches g* may
be lower for large 1 — « (high efficacy and selection) in some
circumstances, but may be higher in others. This variable effect
of efficacy is illustrated in Figure 4. For parameter values used
in Figure 4A, the probability that q, increases to 1077 is higher
when 1 — & = 0.50 (moderate efficacy) than when | — o =
0.90 (high efficacy); the reverse is true for the probability that
g, reaches 107", For smaller values of Ny, higher efficacy always
is associated with a lower probability of g, increasing to g* (except
for values of ¢* close to 1.0, data not shown). This means that,
for small populations, the greater the efficacy of the fungicide
(large 1 — a), the lower the probability that g, will reach detectable
levels (or greater). Conversely, high efficacy has an equal or higher
probability of R occurring and increasing to g* than moderate
efficacy when N is larger (Fig. 4B).

1.0

0.0 : : : : '
-6 -5 —4 = =3 -1 0
10 10 10 10% 10 10" 10

*

Fig. 4. The probability that the final frequency of fungicide resistance
(;) reaches some given level (g*) or greater by the end of a 100-day
epidemic (Pr {g, = g*}). A, Results for four levels of fungicide efficacy
(I — o, printed next to each curve) when initial population size (Np)
is 10°, p = 107" and r = 0.2. B, A comparison of the effects of two
levels of fungicide efficacy (I — « = 0.5 and 0.9) at two different initial
population sizes, 10° and 10% values for | — a and N, are printed next
to each curve. Values for p and r are the same as in A.

The effects of growth rates, r, and mutation rates, p, are similar
to those for N,. For smaller r, population size remains smaller,
and, hence, the probability of R occurring stays lower. The same
holds for smaller values of p. Lower mutation rates reduce the
probability that R mutants occur.

Expected values of Ny, and g,. The effects of N, p, and r
on E[Ng (X)] and E[g(X)] are similar to those on the probability
of resistance increasing to a given frequency: Larger values for
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Fig. 5. The expected values of the number (Ng,) and frequency (g,) of
fungicide-resistant individuals in 100-day epidemics as functions of
fungicide efficacy (1 — @). A, Expected value of Np, for three initial
population sizes (N, = 10*, 10°, 10°); the curve for Ny = 10° is too close
to zero to show on this graph. Values for p and r were 107° and 0.20,
respectively. B, Expected values of ¢, for the same parameter values as
in A. C, Expected values of ¢, for four values of population growth
rates (r = 0.10, 0.20, 0.30, 0.50). Initial population size was 10° and
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these parameters result in larger values of E[Ng (X)]and E[g/(X)].
For all values of Ny, E[Ng(X)] decreases as fungicide efficacy
increases (Fig. 5A). This occurs because the probability of a
resistant mutant arising decreases as fewer new individuals are
added to the population when a fungicide suppresses reproduction.

In contrast to E[Ng(X)], E[g(X)] has a maximum value at
intermediate values of | — « (for values of Ny from 10° to 10
when r = 0.20 and p = 10°°). The intermediate maximum is
even more evident for values of r greater than 0.20 (Fig. 5C)
(when Ny = 10% and p = 107°).

Multiple year dynamics. The model results presented thus far
pertain to single seasons or epidemics. To evaluate longer term
effects of using selective fungicides, I performed Monte Carlo
simulations of this model over 10 100-day seasons. The purpose
was to discover how often resistance arises and how long it takes
the frequency of R toincrease to high levels. For these simulations,
each season started with the same value for N, The number
of R individuals present at the beginning of each season was
a function of the final frequency of the previous season, g. The
initial number was determined by randomly sampling from a
Poisson(Nyg,) distribution if Nyg, was less than 100; otherwise,
Ngro = Nogp the expected value from the Poisson distribution.
The initial number of R individuals for the first season in each
10-yr set was determined as above except that the value for the
mutation rate p was used instead of g. If there were no R
individuals initially present, the first occurrence of R was
determined for each season by randomly sampling from the
distribution of X (equation 11). The final frequency, g for that
season was calculated as a function of the sample value for x
using equation 8 with r= 100. One thousand 10-season simulations
were conducted for each combination of N, = 10°, 10%, 10°, 10°
and | — a = 0.99, 0,90, 0.75, 0.625, 0.50. These simulations were
conducted 10 times for a total of 10,000 simulations. The
parameters r and p were constant for all simulations with values
of 0.20 and 107° respectively. From each set of 1,000 10-yr
simulations, the number of times and the median number of years
it took for g, to reach 0.99 (or greater) were recorded.

The frequency of resistance increased to 0.99 (or greater) more
often for larger values of N, at the same level for I — o (Fig.
6A). This is consistent with the single-season dynamics where
the probability that g, reached ¢* was higher when N, was large
(Fig. 3). In almost all cases, R evolved fewer times with higher
fungicide efficacy (Fig. 6A). The exception to this was when Ny
=10 and Revolved in every 10-yr simulation. The median number
of years it took for g, to reach 0.99 was smaller for larger values
of N, than smaller ones (Fig. 6B) for a given level of efficacy.
The effects of efficacy on the median times were mixed, depending
on N, (Fig. 6B). At lower values of N, (10" and 10%), the longest
times for R to build up were when 1 — « = 0.90. In contrast,
the maximum median time was at the highest efficacy value
(1 — a = 0.99) when N, = 10°, and it was at the lowest level
(1 —a=0.5) when N, = 10°.

DISCUSSION

The model presented above predicts the probability that
fungicide resistance reaches a given frequency or absolute
population size by the end of an epidemic. These probabilities
are a function of the initial population size (N,), mutation rate
(p), pathogen growth rate (r), and fungicide efficacy (I — a).
A stochastic model has been developed because in some circum-
stances, especially when Ny is small, there is a high probability
that the initial frequency R is zero. Selection cannot occur when
there is no variability in resistance, and, therefore, the frequency
of R will remain zero until an R mutant arises, regardless of
how much fungicide is used. In contrast, deterministic selection
models that assume initial frequencies greater than zero
(3,6,10-12,15) may overestimate the risks of resistance developing
when N, is small. These models predict that, even if the initial
frequency is very low, fungicide use will select for higher
frequencies. In the stochastic approach, the number and frequency
of resistant individuals will be lower at the end of an epidemic

414  PHYTOPATHOLOGY

if the first resistant individual does not arise until later in the
epidemic. The uncertainty in the stochastic model is the time
at which the first R individual occurs in a population.

Many of the model results are intuitively obvious. When N,
and r are small, the population size remains small and the
probability of R occurring remains low. Similarly, if the mutation
rate is very low, R is less likely to occur until later in an epidemic
when the population reaches a larger size. When the first R mutant
occurs late in the epidemic, there is not as much time for selection
to act, and, therefore, the frequency of R remains low (Fig. 1).

The implications of this model to fungicide resistance
management are simple with respect to N, and r: The strategy
is to keep N, and r small. Not surprisingly, these are the basic
strategies previously identified for fungicide resistance manage-
ment (13,16) and disease control in general (7,22).

The effects of fungicide efficacy on the evolution of resistance
are not as intuitive. Deterministic selection models predicted that
higher frequencies of resistance result from higher fungicide
efficacy (3,10,16,19). However, if a population is kept small by
a very effective fungicide (large 1 — @), then the probability that
R occurs is kept low (Fig. 4), and the expected number of R
individuals is smaller than for lower values of 1 — a (Fig. SA).
Conversely, when | — « is small, populations may reach larger
sizes, and the probability of R occurring early in the epidemic
is higher, resulting in larger numbers of R.

The effects of fungicide efficacy depend on initial population
size, Np. When N, is large (for example, 10%), predictions from
this stochastic model start to converge with those from
deterministic models (10,16,19). This can be seen several ways.
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Fig. 6. Mean results of Monte Carlo simulations for 10-yr runs as a
function of fungicide efficacy (I — «) and initial population size (Ny)
(details of simulations are in the text). One thousand simulations were
conducted 10 times for each combination of Ny and | — a. A, Number
of times (out of 1,000) that the frequency of fungicide-resistant (R)
individuals increased to 0.99 or greater. Resistance evolved in every 10-
yr simulation when Ny, = 10°, B, The median number of years to reach
a frequency of resistance 0.99 or greater, for those simulations in which
resistance developed.




In Figure 4B, the curves for the probability of g, reaching g*
or greater for | — a = 0.50 and 0.90 when N, = 10° are similar
until g* = 10°°, at which point the probability is much higher
for higher efficacy. When N, = 10°, the curves are farther apart
and do not intersect until g* = 107°. Another way to view the
interactions of I — « and N, is in Figure 5B, where the maximum
for E[q,(X)] is at higher level of | — « as N increases. Finally,
it can be seen in Figure 6A that fungicide efficacy has no effect
on the number of times resistance evolves to high frequencies
when Ny, = 10° but higher values of 1 — « result in fewer
occurrences of R when Nj is less than 10°,

An evaluation of the strategy of intensive fungicide use for
resistance management depends on understanding the effects of
fungicide efficacy, 1 — a. Because a is assumed to be the average
reduction in growth rate for an epidemic, fungicide efficacy can
be viewed as equivalent to the intensity of fungicide use. As
discussed above, the effects of | — « depend on N,. Therefore,
for some cases when N, is small, intensive use of fungicides may
be a reasonable strategy for suppressing the evolution of resistance.

An example of a system in which this condition is met is when
primary inoculum migrates long distances to areas where inoculum
cannot survive over winter, such as blue mold of tobacco caused
by P. tabacina. Small numbers of sporangia of P. tabacina migrate
to tobacco-growing areas in Connecticut from areas to the south
(1). The probability of any fungicide-resistant types migrating
depends on the total number of individuals that successfully
migrate (Ny) and the frequency of R in the source population.
The fact that relatively few sporangia survive migration, land
on susceptible plants, and successfully infect means that N, may
be extremely small. If the source population had a frequency
of R less than a detection threshold (say, 107%), the probability
of R in the initial migrants could be estimated roughly as
I — ¢ ™' (from equation 2). If this probability is extremely
low, then there would be little risk of using fungicides intensively.
However, subsequent occurrence and development of R would
depend on p, r, and a. Greenhouses are another area for which
this model may be applicable because greenhouse populations
may be isolated, and intensive sanitation practices could reduce
Ny to very small numbers. The key factors that make intensive
fungicide use possible are small initial population size and low
(less than detectable) initial frequencies of resistance.

Another system in which initial population sizes are often small
is potato late blight caused by Phytophthora infestans (Mont.)
de Bary. Populations of P. infestans in North America undergo
drastic reductions in size seasonally because the pathogen only
survives between crops in potato tubers, When proper sanitation
practices are implemented to minimize inoculum from cull piles
and volunteers, seed tubers are the main source of primary
inoculum. Furthermore, less than five in 1,000 infected tubers
result in primarily infected plants the next season (18; W. E.
Fry, personal communication). Assuming that seed is produced
without any exposure to phenylamide fungicides, then the initial
frequency of resistance is approximately p, say 107", Also assume
that one in 100 seed tubers is infected with P. infestans (this
is a rather high estimate for seed tubers). Therefore, a 100-ha
farm will have approximately (100 ha) X (48,000 seed tubers ha')
X (0.01 infected tubers per seed tuber) = 48,000 infected tubers.
Of the 48,000 infected tubers, approximately (48,000)(0.005) =
240 plants will become infected with primary inoculum. Using
this estimate of 240 for N, and assuming that | — « is approxi-
mately 0.90 (phenylamides are very effective for controlling late
blight), then the probability of R reaching detectable frequencies
is extremely low during a 60-day epidemic. For this 100-ha potato
system (assuming no immigration or inoculum from cull piles,
etc.), there is less than a one in 250 chance that the frequency
of phenylamide resistance will increase to a level of 107 under
intensive use of phenylamides when r is 0.5. This probability is
much lower when r is smaller—for example, when nonselective
protectant fungicides also are used or when certified seed with
a much lower frequency of infected tubers is used.

It has been suggested that selective fungicides never should
be used for potato-seed production because of the risk of

disseminating fungicide-resistant inoculum (14). An alternative
strategy might be to use fungicides intensively to keep the
population so small that the number of infected tubers is
minimized. This reduces the probability of R occurring to almost
zero because Ny will be very small. Phenylamide fungicides are
used in some potato-seed production with this rationale in mind
(S. A. Slack, personal communication). These same types of
calculations may be applicable to other systems in which inoculum
is primarily seedborne and is present in low numbers (for example,
certified seed).

To use this model to evaluate the risks in any particular system,
one must have reliable estimates of Ny, r, p, and | — . The
model results presented in this paper are for a very limited set
of parameter values. It is not possible to make sweeping
generalizations that apply to all systems because the four
parameters are not independent. It is also difficult to estimate
these parameters accurately in many cases. Finally, it is important
to know the extent of migration within and between geographic
areas. In the late blight example discussed above, I assumed no
immigration to simplify the calculations. However, the risk of
immigration of R individuals is not considered but obviously
could affect the development of resistance. Therefore, caution
must be used in applying these model results to any real system.

Some field experiences with resistance may appear at first to
contradict model predictions that intensive fungicide use may be
an appropriate management strategy under some circumstances.
However, rapid development of resistance should prompt an
examination of the critical parameters that affect the appearance
and evolution of resistance. Was fungicide applied to large
populations (large N;)? Was epidemic development rapid (large
r), etc.? In addition, one should ask whether resistance is localized
or widespread and, if it is widespread, whether it arose once and
migrated throughout an area or arose many times independently.
This model predicts probabilities of R occurring in closed
populations. It does not predict absolute certainties or anything
about movement of resistance once it evolves.

The stochastic model presented here is simplified and, therefore,
has obvious limitations. The model assumes geometric growth
to simplify the calculations. Logistic or other types of density-
dependent population growth generally will tend to slow the
evolution of resistance (16). Therefore, the stochastic model, if
anything, overestimates the risks of resistance. The assumptions
that resistant and sensitive types have equal fitness in the absence
of fungicide, and that fungicide has no effect at all on R are
other potential sources for overestimating the occurrence of
resistance. On the other hand, only single mutations are assumed
to occur; mutations to R in multiple individuals are ignored,
even though they are likely to occur (especially as N gets large).
This simplification is justified, however, because the strength of
selection is generally much more important to the evolution of
pesticide resistance than are mutations, once resistance is present
in a population (16). Other refinements to this model are possible.
However, for the purposes of deriving some qualitative gener-
alities, the additional complexity is not necessarily warranted.
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