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Many plant pathogens and herbivorous insects can cause spa-
tially aggregated damage to plants. Recently, Hughes (4,5) pointed
out that the spatial variability of crop damage due to harmful
organisms can have an important effect on the prediction of crop
yield and that this effect is often ignored. The magnitude and
direction of the bias introduced into the estimation of yield by
spatial aggregation will depend on both the shape of the curve
for observed yield versus severity of attack, and the frequency
distribution of damage to plants. To demonstrate this bias in
the prediction of yield, Hughes (5) expressed yield from a field
with irregularly distributed damage in terms of a weighted average
over the expected yield from each plant. In these calculations
a truncated negative binomial function was chosen to describe
the distribution of severity of damage, and the yield versus severity
relation was given by a one-parameter function, which allowed
for either a positive or a negative second derivative of yield with
respect to severity.

Hughes (5) showed that when the second derivative of yield
with respect to severity is positive, then the overall average yield
in a field with a constant amount of damage increases with in-
creasing aggregation of damage. However, when this second
derivative is negative, a field with a clustered distribution of dam-
age tends to yield less than its homogeneously damaged counter-
part. These two shapes of the yield versus severity of attack curve
have been termed Type I (positive second derivative) and Type
II (negative second derivative), respectively (Fig. 1; 8). Johnson
(6) suggested that, in general, Type I curves are characteristic
of pests that affect the radiation use efficiency, RUE, and that
Type Il curves may be associated with pests that cause foliar
damage to crops with moderate to high LAI and, thus, directly
affect intercepted radiation. The shape of the yield versus severity
of attack curve may also, however, depend on the way in which
the attack on the host plant is quantified and averaged over time
(10). For example, in a study on the effect of several Meloidogyne
species of nematodes on the yield of flue-cured tobacco (2), a
Type 1 yield-severity relation was observed when nematode popu-
lation density was used to describe severity of attack. However,
when a direct measure of damage to plants (root-gall index) was
used to quantify severity attack, the resultant yield-severity rela-
tion was either linear or a Type II curve.

A similar methodology was used by Noe and Barker (9) to
predict the effect of aggregation of nematodes (Meloidogyne
incognita) on yield loss. They used pathogen population density
to characterize severity of attack. Yield was assumed to linearly
decrease with the log of the population density and, once again,
the negative binomial function was used to describe the dis-
tribution of the pathogen. Predicted yield was found to increase
when the nematode population was spatially aggregated because
the second derivative of the logarithmic relation between yield
and population density is positive. Of course, this effect was largest

© 1989 The American Phytopathological Society

for small values of the parameter k in the negative binomial
distribution (3), which is a measure of dispersion in the population.

To implement the above approach, one needs to know, a priori,
the frequency distribution for different levels of plant damage
throughout a field. When spatial aggregation is important, the
negative binomial distribution has been applied successfully to
describe damage to plants for many observed epidemics (11). There
are, however, some difficulties in applying this unbounded and
discrete distribution to disease data. When applied to a bounded
variable such as fractional disease severity, the distribution must
be truncated and renormalized (5). When applied to population
density (9), which is estimated by counting the number of indi-
viduals within a certain sample volume, the fitted value of k for
the distribution is very sensitive to the size of the chosen sampling
unit.

The purpose of this letter is to present an approximate method
that provides an easily calculated yet reasonably accurate estimate
of expected yield when damage due to disease is distributed non-
homogeneously. This method uses data directly and is not de-
pendent on a fitted distribution function to describe the observed
variability of damage to plants.

METHODS

1 assume that the final yield of a damaged plant with severity
of attack, s, can be expressed as a fraction, y(s), of the yield
produced by a healthy plant (s = 0), and that s is divided into
L discrete categories s; for 1 < i < L. Within a field containing
a total of N plants, let n; be the number of plants with severity
of attack s, The mean severity of attack, s, is then defined by:
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Fig. 1. Effect of severity (s) and aggregation on fractional yield (y). The
predictions for y using Eq. 8 are plotted versus s for B = +1 (dotted
line, Type I) and B = —1 (dashed line, Type II) for ¢, =0, 0.5, and 1.
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A plant with severity s; will produce fractional yield, y(s;), and
the mean fractional yield per plant for the entire field y can
be expressed in terms of a weighted average of y(s;):

iy (2] / N. @

Expanding y(s;) in a Taylor series about y(s) one obtains:
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in which y’(s) and y”(s) represent the first and second derivatives,
respectively, of y with respect to s. By the definition of s, the
second term in this expansion, which is linear in (s; — s), will
sum to zero. Eq. 3 is the discrete analog of the result presented
by Allen (1) for continuous distributions.

As a first approximation, consider only the first two nonzero
terms of Eq. 3 (1), so that:

Yy =y(s) +y" (5)(MSD(s))/2, “4

where M S D(s) is the mean square deviation from the mean disease
severity defined by:

AMDm:ém€ﬁm/N (5)
i=1

MSD(s) equals 0 when damage is homogeneous and MSD(s)
increases with increasing aggregation. When severity is bounded
(e.g., the maximum value of fractional foliar damage is unity),
there is also an upper bound on the value of MSD(s). For later
convenience, I define a coefficient of aggregation ¢,
da= MSD(s)/[s*(s(MAX) — 5)], (6)

where the denominator corresponds to the maximum possible
MSD(s). Using the above relation Eq. 4 can be rewritten as:
Y =y(8) T y(5)ydals(s(MAX) —5)]/2. “4)

The parameter MSD is by definition positive-definite and, thus,
the effect of aggregation of damaged on the average yield is totally
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determined by the sign of the second derivative of the yield-severity
relation. When the yield-severity relation is of Type I, the second
term in both Eq. 4 and Eq. 4’ is positive and aggregation of
damage increases yield. When the relation is of Type II, aggre-
gation decreases yield, in qualitative agreement with Hughes (5).
In addition, Eq. 4 provides a prediction for the magnitude of
the effect of aggregation on yield in terms of the product of the
second derivative of yield with respect to severity and the
calculated value of MSD(s).

THEORETICAL AND EMPIRICAL EXAMPLES

In general, Eq. 3 can be used to evaluate the effect of aggregation
of damage on expected yield to any desired degree of accuracy.
The number of terms that must be included in the expansion
will depend on the particular case in question. Often, however,
the approximation provided by Eq. 4 is sufficient, as the following
examples will illustrate.

As a theoretical example, assume that the curvature of the
yield-severity relation is constant, which is equivalent to an
assumed quadratic relation between percent yield and severity
of damage s. Letting the fractional yield equal one at s = 0 and
zero at s = 1, gives:

ys)=1—s— Bs(1—s), @)
where Bis a parameter related to the curvature of the yield versus
damage relation. Eq. 7 can be combined with Eq. 4’ to yield:

®)

The variables characteristic of a field with nonhomogeneously
distributed damage (y, s, and ¢,) can be directly measured and,
thus, the parameter B can be obtained by nonlinear regression
if there are several values for these variables. In general,
aggregation of damage reduces the curvature of the yield-severity
relation and both the Type I (B = 1) and Type 11 (B = —1)
relations give the same yield prediction when ¢, = 1 (Fig. 1).

An example of yield loss for potato plants defoliated by late
blight. Often severity of attack is obtained, in a field plot, as
the mean of many observations over time and space, while the
final yield is bulked. If in addition to the mean damage, the
variation about this mean is also taken into account, some estimate
of the effect of aggregation on the bulk yield may be obtained.
As an example of this procedure, the dry tuber yield from 180
1.5- X 1.5-m quadrats from a potato field are plotted (open circles)
against mean fractional defoliation caused by late blight, D, in

J=1=5—B(1—¢)5(1—5).
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Fig. 2. Fractional dry tuber yield versus fractional defoliation of potato plants due to late blight for 1.5- X 1.5-m quadrats (A) (open circles)
and 4.5- X 4.5-m bulked quadrats (B) (closed circles). Also shown are yield-severity predictions (Eq. 9) resulting from regressions I and II of Table

I (solid line and dashed line, respectively).

1230 PHYTOPATHOLOGY



Figure 2A (Ferrandino, unpublished). D is defined by the
equation:

D=1~ HAD/ HAD(MAX),

where HAD is the healthy area duration (12) and HAD(MAX)
is the maximum observed value of HAD. This data set was fit
to a two-parameter equation analogous to Eq. 7:

y(s)=1—A-D+ B-D. 9)

The nonlinear regression fit to Eq. 9 (solid line) is also plotted
in Figure 2A and B and the parameters for the fit are shown
in Table 1 (Regression I). To simulate bulking, the mean yield
y from 20 blocks containing nine contiguous quadrats from the
same data set are plotted in Figure 2B (solid circles). The bulked
data were also fitted by nonlinear regression to Eq. 9 (Table
1: Regression II) and the fit is plotted in Figure 2B (dashed line).
Because of the aggregation of damage, bulking resulted in a les-
sening of curvature for the yield versus severity relation (Fig.
2B) and a corresponding decrease in the absolute value of the
parameter Bin the regression (Table 1). The effects of aggregation
of damage on the bulked yields can be estimated by combining
Eqgs. 4 and 9 to yield:

y=1—A-D+ B(D’+ MSD(D)), (10)
where D and MSD(D) are defined in analogy with the expressions
for s (Egs. 1 and 5, respectively). Eq. 10 can be rewritten in
terms of ¢, (Eq. 6):

y=1—(A4A— ¢aBrD+ B(1— ¢pp)>D (11)

TABLE I. Results of nonlinear regression using Eq. 9 for the late blight
data shown in Fig. 2

Parameters®
Data
form df* A B ¥
I Single 178 0.02+0.02 —0.82+£0.03 074
quadrat
11 Bulked 18 032+002 —048%£0.04 095
(9 quadrats)

*Degrees of freedom in the regression fit.

®Values shown are the estimated regression parameters + the standard
error for Eq. 9.

“Coefficient of determination.
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Fig. 3. Predicted fractional dry weight yield (y) versus nematode popu-
lation density [m; number/(500 cm’)] for tobacco plants infested with
nematodes. Closed circles: calculations of Noe and Barker (1985); Solid
line: homogeneously distributed damage [y(m) = 1 — 0.1 loglO(m)];
Dashed line: first two terms of Eq. 13; Dotted line: Eq. 13 including
the third order term.

where s(MAX) has been set equal to 1. For ¢, = 0, damage
is distributed homogeneously and Eq. Il becomes identical in
form to Eq. 9. As ¢, increases, the contribution of the D? term
in Eq. 11 decreases and the yield-severity relation becomes more
nearly linear.

The yield predictions of Noe and Barker (9) for tobacco are
shown as a function of mean nematode density in Figure 3. They
assumed that the normalized yield y was a linearly decreasing
function of the log of the mean nematode density m expressed
as the number of nematodes per 500 cubic centimeters of soil
[y(m)=1—10.1logl0(m)]. They also assumed that the population
distribution was given by a negative binomial with the k parameter
set equal to 0.0018:m. For this case, y"(5)/2 = (46.06:m>) — 1
and the variance of the negative binomial distribution is given
by oem*= m(m + k)/k (2) and is equal to MSD(m). For this
example, the general formula (Eq. 3) can be written as:

(m+k)
46.06 *k*m

(m+ k)yQm+ k) +
138.18-k%m*

y=y(m+ (12)

which can be simplified with the relation kK = 0.0018:m (8) to
yield:

¥y =y(m)+ 12.08/ m — 4,479/ m*+ . .. (13)

Once again the estimate provided by Eq. 4, which includes only
the first two terms of Egs. 12 and 13, is reasonably good over
most of the range of mean nematode densities (Fig. 3). For m
<C 250, the last included term in Egs. 12 and 13, which is third
order in deviations from the mean population density, becomes
important (Fig. 3).

The estimation of yield using Eq. 3 involves one or two cal-
culations depending on whether or not the third order term is
included. By way of contrast, the results of the Noe and Barker
study involved a summation over as many as 6,000 terms for
each individual yield estimation.

DISCUSSION

To implement Eq. 3 to estimate yield one needs to know the
functional form, y(s), of the yield-severity relation for a single
plant. In addition, this relation must be well behaved so that
the second and higher order derivatives with respect to s can
be estimated. The simplification of Eq. 3 to second order (Eq.
4) is contingent on the additional restriction that the higher order
terms in the expansion remain small. The method can be applied
to more general forms of the yield-severity relation; however,
each application must be properly handled to make sure that
singularities and other complications are taken into account. For
example, the model can be applied to the yield-severity relation
proposed by Madden et al (7), as long as samples are restricted
to cases for which damage exceeds the threshold level, below
which no yield loss occurs.

The foregoing method of using the observed variance of severity
of damage in Eq. 4 to estimate yield when plant damage is spatially
aggregated, is mathematically simple and in many cases suffi-
ciently accurate. The method also has the advantage of directly
using data as opposed to using a fitted population distribution
function to describe the variability of damage. Despite several
restrictions on the applicability of the method, it should be useful
for estimating the effect of spatial aggregation of plant damage
due to disease, insects or nematodes on final yield.
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