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ABSTRACT

Hudelson, B. D., Clayton, M. K., Smith, K. P., Rouse, D. I., and Upper, C. D. 1989. Nonrandom patterns of bacterial brown spot in snap bean
row segments. Phytopathology 79:674-681.

Each leaflet on every plant in 37 5-m row segments and a single 12-m techniques detected the slow, undulating change in disease incidencerow segment from commercial snap bean fields was assessed for bacterial values; however, only ARIMA modeling detected thejaggedness and couldbrown spot. Graphs of the proportion of diseased leaflets per plant (disease quantify both patterns. A "generalized ARIMA(1 0 1) model" was foundincidence values) versus plant position along the row suggested two types to describe 35 of the 38 data sets. The biological mechanism generatingof nonrandom variability in disease: an extreme jaggedness superimposed these patterns is unknown. Knowledge of the existence of such patternson a slow, undulating change in disease. Arcsine square root-transformed is important for developing effective sampling strategies for this disease.disease incidence values were analyzed for spatial nonrandomness using Theoretical characteristics of the generalized ARIMA(1 0 1) model indicatethree techniques: runs analysis, autocorrelation analysis, and auto- that random start systematic sampling will provide a better estimate ofregressive integrated moving average (ARIMA) modeling. All three total or mean brown spot in a row than simple random sampling.

Additional keywords: adaptive sampling, Pseudomonas syringae.

Previous work has shown that a quantitative relationship exists of population sizes of pathogenic bacteria on individual leaflets
between the population size of Pseudomonas syringaeepv, syringae and the probability of disease given population size. The
van Hall and incidence of bacterial brown spot on snap beans lognormal distribution is used to describe population size of
(Phaseolus vulgaris L.) (2 1,26,38). The hazard of this disease can pathogenic bacteria on individual leaves or leaflets (20), and the
be predicted approximately 1 wk in advance from estimates of probit function is used to describe the probability of disease given
the frequency with which large epiphytic populations of the bacterial population size (16). Although these studies have
pathogen occur on bean leaflets. A model has been developed increased our knowledge of the temporal variation of brown spot
that describes the relationship between pathogen population size disease incidence, they have not addressed an equally important
and disease incidence (38) by combining the frequency distribution component of the epidemiology of this disease: its spatial

variation.
____________________________________________ Several studies suggest that nonrandom patterns of diseases

This article is in the public domain and not copyrightable. It may be freely caused by pathovars of P. syringae may exist (15,25,34). As earlyreprinted with customary crediting of the source. The American as 1920, Elliott (15) reported that halo blight of oats occurs inPhytopathological Society, 1989. foci within a field. More recently, Lindemann et al (25)
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demonstrated that both population size of P. s. syringae and two diseased areas were identified within a commercial snap bean
bacterial brown spot incidence differed among bean plots that field (cultivar Galamore) located near Spring Green, WI (Iowa
were separated spatially within a 64-km transect, even though County), and three adjacent 5-m row segments from the first
the plots were sown at the same time and with the same lot area and a single 5-m row segment from the second area were
of seeds. In addition, Poushinsky and Basu (34) have determined assessed for bacterial brown spot. In addition, a 12-m row segment,
that bacterial blight of soybean, caused by P. s. pv. glycinea selected from a diseased area in a commercial snap bean field
(Coerper) Young, Dye & Wilkie, can occur in a nonrandom (cultivar Early Bird) located on the University of Wisconsin
pattern. experimental farms, Arlington, WI, was assessed. In July of 1987,

To date, most studies of spatial pattern have used individual two adjacent Arlington, WI, 5-m row segments, selected from
quadrats as a spatial sampling unit (19,30,37,42). Often quadrat a diseased area of a commercial snap bean field (cultivar Bush
data are analyzed by determining the frequency distribution of Blue Lake 109) located on the University of Wisconsin
quadrats with given levels of disease or inoculum. If the observed experimental farms, Arlington, WI, were assessed for bacterial
frequency distribution is not significantly different from the brown spot. In addition, in August of 1987, two separate 5-i
Poisson distribution, the disease or inoculum is said to be row segments were selected from diseased areas in a second snap
distributed randomly (33). Because this test does not take into bean field (cultivar Eagle) located on the University of Wisconsin
account the location of each quadrat, it does not provide any experimental farms and assessed. Thus, we have sampled row
information about the spatial pattern of the disease or the segments for 3 yr and from six commercial-size plantings of snap
inoculum at a scale greater than the quadrat (31,33). If any beans (Ž> 2 ha), five snap bean cultivars, and two diverse locations
additional search for spatial pattern is made, it is made at multiples in Wisconsin.
of the initial quadrat size (30,40). This approach is useful but Disease assessment. Within a given row segment, each leaflet
is unlikely to detect patterns that do not occur at a scale that on every snap bean plant was assessed for the presence or absence
is an even multiple of the initial quadrat size. In addition, if of bacterial brown spot. Bacterial brown spot was distinguished
quadrat data are based upon samples taken randomly from within from other foliar diseases of snap bean by its characteristic roughly
quadrats, as is frequently done, then any nonrandom pattern circular, dark brown lesions with narrow yellow haloes. For lesions
within quadrats will not be detected. Furthermore, it is assumed of questionable etiology, bacterial isolations were made onto
that samples provide an adequate estimate of the disease or King's medium B (23) using the techniques outlined by Schaad
inoculum within the quadrats. In most plant disease studies, this (39). A predominance of P. syringae was considered evidence
assumption has neither been tested nor validated and may be that the lesion in question was bacterial brown spot.
suspect if there are nonrandom patterns within the quadrats. Data analysis. Within a given row segment, each plant was

A number of methods of analysis of spatial pattern do not assigned a positive integer representing its position in the row.
require quadrat data; instead, the location of each sample is used For example, the first plant in the row segment was assigned
(1,9,43). For distance methods (12,13), the basic sampling unit the number 1, the second plant number 2, etc. Disease incidence
is a point, for example, a plant, and the data collected are the values were expressed as the proportion of diseased leaflets per
distances between diseased plants (18,35). Usually, distance plant; these proportions will subsequently be referred to as
methods note only the presence or absence of disease but not "untransformed disease incidence values." To stabilize the
the amount of disease on the sampling unit. In the runs test variance within a given data set, disease incidence values were
(17), the number of groups (runs) of diseased and healthy plants transformed using an arcsine square root transformation (41).
along a line is recorded. This method has been used for row These "transformed disease incidence values" were used for
crops to determine if disease occurs nonrandomly along rows subsequent analyses. The transformed disease incidence value of
(28,29). Finally, in correlation analysis, the value of each sample the t-th plant in a row segment is denoted Y,. For row segments
is correlated with that of its neighbors (3,9,32,36,37). Thus far in which diseased plants were clustered near the center of the
this technique has been used only to study quadrat data, but, 5 m (data sets 8.1-8.3 and 9.1 in Table 1), only data from the
as with frequency approaches, these applications may suffer by central diseased portion of the rows were used for analysis.
ignoring spatial patterns that occur within quadrats. Extended areas of zeros were excluded from analysis in this way.

The most intimidating problem facing anyone wishing to For these data sets, the row length actually analyzed ranged
measure spatial patterns of disease in agricultural settings centers between 1.85 and 2.81 m. All other data sets were analyzed in
on the immensity of the task of sampling from an entire field their entirety.
in a way that can detect and quantitate patterns that may occur Transformed disease incidence values within a given row
at several scales. Cost and manpower constraints rule out a census segment were initially analyzed using a two-sided runs test (17).
approach that monitors disease or pathogen populations on all A run was defined as a succession of transformed disease incidence
leaflets, leaves, or even plants in a field. Thus a theoretically values all of which were either above or below the mediansound approach for sampling, from quantitating, and describing transformed disease level for the row segment being analyzed.
unknown spatial patterns of plant diseases at all scales within Transformed disease incidence values equal to the median were
a field is needed. The strategy we are currently developing, which omitted from the data set, and the runs analysis was performed
we call "adaptive sampling," is an iterative procedure that starts on the remaining data points (17). For data sets where the median
with small areas and proceeds to increasingly larger areas, transformed disease level was zero, a runs test could not be
adjusting sampling methods in each iteration to consider the performed. For the remaining data sets, the number of runs (U)
patterns present in the smaller areas. This paper describes the and the total number of transformed disease incidence values
spatial patterns of brown spot that we have detected during the that were above (n1) or below (n 2) the median transformed disease
first iteration of this method. level were determined. Because n1 and n2 were greater than 10

in these data sets, a standard normal (Z) test (a 0.05) was
MATERIALS AND METHODS used to test the null hypothesis that transformed disease incidence

values were randomly arranged within row segments (17).
Sample collection. Thirty-seven 5-in snap bean row segments In addition to the runs test, transformed disease incidence values

and a single 12-in snap bean row segment were monitored for were described using autocorrelation (or lag correlation) analysis
natural infections of bacterial brown spot during the 1985, 1986, (4,7). For each data set, the sample autocorrelation function
and 1987 growing seasons. In 1985, six 5-inX 4-row experimental (ACE) was calculated using MINITAB, release 5.1.1 (The
plots and a single 5-in X 5-row experimental plot were established Pennsylvania State University, University Park). The sample
in diseased areas of two commercial snap bean fields (cultivar ACE, denoted ryr(s), estimates the theoretical autocorrelation
Goidrush) located near Arlington, WI (Columbia County). During function, denoted pOr(S), which is the correlation in transformed
July of that year, all row segments within these plots were assessed disease incidence values for all pairs of plants that are s plants
for bacterial brown spot as described below. In July of 1986, apart (for integer values of s > 0). The integer s also is known
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as the lag value. The sample ACF is calculated as follows (4): addition, sample partial autocorrelation functions (PAC~s) (4)
were calculated for this purpose via MINITAB using a recursive

T-s _ - method developed by Durbin (14). Sample PACFs are denoted
t (Y, Y) ( Y1+S- Y) (ks) and should not be confused with parameters (4s) in the

r y(s) T ARIMA model described above. PACFs, like sample AC~ s,

E (Y,- y), estimate correlations between Y', and Y,+s for integer values of
s > 0. However, PACFs take into account and correct for the

for s - 1, 2, 3, etc. As noted above, Y, and Y,+, represent the fact that correlations at a given distance may result

transformed disease incidence values for plants that are located correlations that occur at shorter distances. An approxima
a s n d wt am YCI for 0 y(s) was calculated in a manner similar to that describedat positions t and t + s within a given row segment. Y is the frp~)aoe()for pr(S) above (4).

mean transformed disease level, and T is the total number of
plants in a given row segment. For the purposes of this analysis, Sample AC~ s and PACe s were compared with theoreticalthe direction in which the plants are numbered (that is, either ACfes and PAC ts derived from particular ARIMA models (4).upt If the sample and theoretical functions were similar, the

An approximate 95% confidence interval (CI) was calculated corresponding ARIMA model was fit to the data set. For these
An aproimae 9% cofidnceintrva (CI wa caculted selected models, least squares estimates of /~s and Os and the

for each value of p O(s), for 1 < s •< 20, under the assumption standard errors of these estimates were obtained using the ARIMA

that transformed disease incidence values were randomly arranged cmand of tAB. estimates were onsided significA

on plants within a given row segment. Under this assumption, command of MINITAB. Estimates were considered signicl
theexpcte vaueof y~s iszeo fr al s> . I aditin, different from zero if their absolute values were at least wc

the expected value of r y (s) is zero for all s > 0. In addition, their standard errors. This procedure is approximately equivalent
the variance of ry(s) is approximately 1 /T for all s > 0 (4 z, and

therefore an approximate 95% CI for py(s) is 0 ± 2/ VT for to performing an appropriate t-test with T - P - q - 1 degree

all s > 0. The presence of an excess number of values of s for of freedom and a - 0.05 under the null hypothesis that - 0

which ry(s) was outside these 95% CIs was considered evidence (or 0 - 0). If a 0 or 0 did not appear to be significantly different

that transformed disease incidence values were not randomly from zero, then an ARIMA model without this term was fit to
arranged on plants within the row segment being studied. Because the data set. Terms were restored to the model if diagnostic
we used a 95% CI and evaluated 20 values of ry(s) for each data procedures (see below) indicated that the reduced model wasset, we expected (under the hypothesis stated above) to observe inadequate. The general process of model building given aboveon average that one value of ryh(s) would be outside its is similar to that outlined by Chatfield (8).Thervergethato leofore, i d ti c onxt, e " s The adequacy of models was evaluated using the diagnosticcorresponding 95% CI (6,8). tools of Box and Jenkins (4). These diagnostic tools areebased
number of values of s" was defined as two or more. In addition, on the assumption that a model that fits a data set adequatel
single significant values of ry(s) were considered of interest if should yield residuals a that exhibit a random patternPlts
they occurred at low lags (that is, lags 1 or 2) or were far outside of residuals versushpredictedtYs andrs pant Poti
the CIs. of residuals versus predicted Ys and residuals versus plant p

To obtain a clearer description of the spatial patterns of bacterial along the row were evaluated to determine if any systematic
brown spot within snap bean row segments, data sets were modeled patterns (that is, fan-shaped or curved patterns) were present that

using autoregressive integrated moving average (ARIMA) models might indicate that model assumptions had been violated (4,6,8).

(4). These models are special cases of the spatio-temporal ARIMA In addition, sample AC~s and PAC~s for residuals ry(s) and
(STARIMA) models described by Reynolds and Madden (36) fy(s), respectively, were calculated in a manner similar to that'

and Reynolds, Madden, and Ellis (37). In contrast to the auto- described above for transformed disease incidence valuT
correlation analysis, the direction in which plants are numbered expected values of rj(s) and ý,(s) under the assumption of

in the row could have an effect on the results obtained by ARIMA randomness are zero. Corresponding 95% CIs were calculated
modeling. Therefore analyses were conducted twice, using both using the method of Box and Pierce (5). A fitted model was

orientations. considered inappropriate if, for two or more values of s, ry(s)

An ARIMA(p d q) model, with d 0, has the following general or ýj(s) was outside the corresponding 95% CIs (6,8). In addition
form: to calculating sample ACFs and PACFs of residuals, the modified

Box-Pierce statistic, Q, defined as:
K

Y Q= T(T+ 2)>. [rj(j)]Z/(T--j)
J= I

The Ys in this model are transformed disease incidence values, with K 24, was calculated (27). The Q statistic is used to
The rs represent random "noise" components associated with each determine if values of ry(s) taken as a group rather than individually
plant and are assumed to be independently, identically, and are larger than expected as compared with random data. If the
normally distributed with expected value, E(E1) -- 0, and variance, fitted model is adequate, then Q is distributed as a x2 variable
V(E,) - a2, for all t. Thus the ARIMA model given above indicates with K - (p ± q) degrees of freedom, and a P-value for Q can
that the transformed disease incidence value of any given plant be calculated based on this distribution. The choice of K was
can be described by the transformed disease incidence values of based on the recommendations of Brockwell and Davis (6).
the p preceding plants in the row, as well as the random "noises"
associated with the q preceding plants. The 4•s and Os in this RESULTS
model are constants that quantify this description. In most circum-
stances, f•s and Os can be calculated directly from the Ys. In Untransformed disease incidence values were variable both
other situations however (4), 4•s and Os can be estimated more between and within data sets. The mean untransformed disease
readily by modeling the first difference of the data. Thus the incidence values of individual data sets (based on unweighted
Ys in the equation above are replaced by Ws, where W, -- Y1, averages of untransformed disease incidence values of individual

- Y,-1 . This is denoted with d = 1 in the ARIMA(p d q) plants) ranged between 0.4 and 58.3% (Table 1); half of the data
specification. The final parameter in the ARIMA model is the sets had average untransformed disease incidence values between
constant 6, which is related to the expected value of an observation, 9.3 and 33.1% (the first and third quartiles, respectively). Within
Y,, as follows: data sets, diseased plants were either concentrated within row

segments and surrounded by healthy plants as illustrated by Figure
E(Y,) -- 6/(1 - -4 ..... 4•p) • 1 or present continuously over the entire 5 or 12 m as illustrated

by Figures 2 and 3. Untransformed disease incidence values of
Potential models for data sets were chosen based on the sample individual plants ranged as much as 100 percentage points (for

AC~s that were calculated during autocorrelation analysis. In example, from 0 to 100%) within some data sets to as little as
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14.3 percentage points (for example, from 0 to 14.3%) in others. of disease within the row segment. Of these 32 data sets, 24 had
Among the 38 data sets, the median number of leaflets per plant Z-values of -1.65 or less (P :S 0.10); 21 had Z-values of -1.96
ranged from 15.5 to 30. or less (P :S 0.05). The single data set that contained a greater

Visually (Figs. 1 and 2), nonrandom variability appeared to than expected number of runs had a Z-value of only +0.59
be of two types. The most striking component was an extreme (P = 0.56), indicating that the observed number of runs was
jaggedness of the plots. Plants with relatively high untransformed not significantly different from the number expected given random
disease incidence values tended to alternate with plants with data.
untransformed disease incidence values of lower magnitude. Autocorrelation analysis. Sample autocorrelation functions
Underlying this jaggedness, there appeared to be a slowly also indicated a nonrandom arrangement of transformed disease
undulating change in the local mean untransformed disease level, incidence values within row segments (see Fig. 4 for the ACF
This phenomenon was particularly evident in data sets where derived from data shown in Fig. 2). Thirty-one data sets exhibited
diseased plants were concentrated within row segments (Fig. 1). one or more values of s (1 •< s •< 20) for which ry(s) lay outside

Runs analysis. Five of the 38 data sets could not be analyzed a 95% confidence interval (Table 1). Among these 31 data sets,
using the runs test because the median transformed disease fewer runs than expected were generally observed (Table 1).
incidence value for these data sets was zero. A runs analysis of Twenty-one of the 31 data sets exhibited large correlations in
the remaining 33 data sets indicated that, in general, transformed transformed disease incidence values for plant pairs that were
disease incidence values were not randomly located within row one plant apart (s = 1). Of these 21, 18 had runs test Z-values
segments (Table 1). For 32 of these 33 data sets, a negative Z-value of -1.65 or less and 16 had Z-values of -1.96 or less.
was obtained, indicating that the observed number of runs was ARIMA modeling. The direction in which plants were
less than the number of runs expected given a random arrangement numbered within a row segment had no effect on the final model

TABLE 1. Results from autoregressive integrated moving average (ARIMA) modeling, autocorrelation analysis, and runs analysis of 37 5-m and
one 12-m snap bean row segments

Significantb
autocorrelation

Mean (pa Oa function Runs test
Data set disease (%) ARIMA model estimates estimates (ACF) lags Z-value

4.3c 24.6 CNDd ... ... 2 -0.20

4.4 22.4 CND ... 9 -2.22
7.2 27.4 CND 5,13 -1.25
1.4 4.6 000 0 0 None -0.84
2.3 23.6 0 0 0 0 0 None -2.07
3.2 22.8 000 0 0 None -- 1.04
6.2 0.4 000 0 0 None CND
8.3 3.5 000 0 0 None CND

11.1 25.4 000 0 0 None -2.48
6.1 1.0 000 0 0 8 CND
2.1 32.8 000 0 0 10 +0.59

12.1 50.8 000 0 0 13 -0.78
4.1 36.4 000 0 0 15,17 -1.03
4.2 22.1 1 0 0 0.199 0 None -2.35
3.4 14.7 1 0 0 0.286 0 1,3 -2.20
6.3 2.2 100 0.305 0 1 CND
5.1 17.1 100 0.340 0 1 -4.54
3.1 36.2 100 0.401 0 1,2 -1.84
8.1 6.6 100 0.402 0 1,3,19 -- 1.85
5.4 9.5 1 0 0 0.507 0 1-3,17 -2.03
5.3 6.2 100 0.628 0 1-4,11-13,17 CND
5.5 7.5 1 0 1 0.769 0.416 1-3,5,12,13,18,19 -2.58
1.1 24.5 1 0 1 0.816 0.607 1 -2.05
2.2 29.8 1 0 1 0.825 0.653 1,3 -3.74
3.3 38.3 1 0 1 0.844 0.664 2,3,5 -1.38
8.2 40.5 1 0 1 0.859 0.628 3 -3.36
5.2 13.5 1 0 1 0.861 0.406 1-5,20 -3.56

13.1 58.3 1 0 1 0.868 0.659 1,3,18,19 -1.56
1.3 10.6 1 0 1 0.911 0.539 1-6 -3.13
2.4 19.6 1 0 1 0.9 15 0.759 1,4,6 -3.52
6.4 8.6 1 0 1 0.926 0.525 1-7,15-19 -4.46

10.1 16.2 1 01 0.928 0.671 1-11,14 -4.92
7.4 21.1 1 0 1 0.933 0.767 1,5-8 -2.80

11.2 34.2 1 0 1 0.941 0.648 1-7,9,19 -4.22
9.1 43.8 0 1 1 1 0.662 1-6,18,19 -3.72
1.2 20.8 0 1 1 1 0.684 1-16 -6.09
7.1 34.6 0 1 1 1 0.826 1-9,11,12,14,16 -2.87
7.3 23.0 0 1 1 1 0.867 4,8 -1.82

aparameter estimates for the "generalized ARIMA(l 0 1) model." A 4• value of 1 implies that differenced data were modeled. See text for further
discussion.
bACF lags for which p y(s) lay outside a 95% confidence interval.
c Numbers to the left of the decimal point refer to the plot or area in a field from which the row segments were collected. Numbers to the right
of the decimal point indicate the relative position of the rows within the plots or areas. Data sets 1.1-1.4, 2.1-2.4, 3.1-3.4, 4.1-4.4, 5.1-5.5, 6.1-6.4,
and 7.1-7.4 were collected in 1985, cultivar Goldrush; data sets 8.1-8.3 and 9.1 were collected in 1986, cultivar Galamore; data set 10.1 was collected
in 1986, cultivar Early Bird; data sets 11.1-11.2 were collected in 1987, cultivar Bush Blue Lake 109; data sets 12.1 and 13.1 were collected in
1987, cultivar Eagle.

dCould not determine.
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selected for a given data set and had little effect on the value be distinguished from random data using the runs test tended
of parameter estimates. The largest difference in a parameter to be fit best by an ARIMA(0 0 0) model, whereas data sets
estimate was 0.0005. Parameter estimates discussed below that exhibited too few runs tended to be fit best by an
represent an average of the parameter estimates from both ARIMA(l 0 0), ARIMA(l 0 1), or ARIMA(0 1 1) model.
orientations rounded to three decimal places.

Among the 38 data sets collected, three yielded sample ACFs DISCUSSION
and sample PACFs that were not suggestive of any standard
ARIMA model, and these data sets could not be adequately fit Spatial nonrandomness of bacterial brown spot in the snap
by any of the numerous ARIMA models tested. For an additional bean row segments collected in this study was surprisingly similar
10 data sets (illustrated by Fig. 3), the pattern of disease appeared across data sets. Only four classes of ARIMA models
random. These data sets (Table 1) were best fit by an ARIMA(0 ARIMA(0 0 0), ARIMA(1 0 0), ARIMA(l 0 1), and
0 0) model, which has the following form: ARIMA(0 1 1)-were required to adequately describe more than

90% of the data sets in this study. In addition, more than 65%
Y, = E, + 6. of the data sets showed some type of nonrandom variability based

on ARIMA modeling.
In the remaining 25 data sets (illustrated by Figs. 1 and 2), Nonrandom variability occurred at at least two levels. The

disease was nonrandomly arranged on plants within row segments. dominant component of nonrandom variability was positive
Eight of the data sets (Table 1) were best fit by an ARIMA(l 0 0) correlation between transformed disease incidence values on
model. This model has the following form: adjacent plants. This component was visually evident as the slowly

Y, = 01 Y,-1 + 1, + ± .

Estimates of 01 for these data sets ranged from 0.199 to 0.628. U) 1.0 .

Thirteen data sets (Table 1) were fit best by an ARIMA(1 0 1) L 0.9
model, which has the following form: 0.8

Y7,-- 01l Y'-1 + (,-I- 01•,- I + 6 . 0.7-

Estimates of 01 for these data sets ranged from 0.769 to 0.941 < 0.6
and estimates of 01 ranged from 0.406 to 0.767. For all 13 data W 0.5
sets, estimated values of 01 were greater than estimated values 0 0.4
of 01. For the final four data sets (Table 1), an ARIMA(0 1 1) z
model provided the best fit. This model has the following form: 0 0.3

,- •,- 0j,_, + 8. 0 0.2
0.1

Because Wt, - Y,_ 1, this model also may be written as follows: a. 0.0o

Y, -= ,_0 + 2+ . o 3 4
PLANT POSITION ALONG ROW (M)Thus an ARIMA(0 1 1) model is equivalent to an ARIMA(1 0 1) Fig. 2. Bacterial brown spot disease incidence values for individual snap

model, with 01  1 and nonzero values of 01. Estimated values bean plants (*) within a 5-m row segment. Disease incidence values are
of 01 for these four data sets ranged from 0.662 to 0.867. expressed as the proportion of diseased leaflets per plant. Data were

Results from ARIMA modeling closely paralleled those collected in July 1985 from a commercial snap bean field (cultivar
obtained from the runs test (Table 2). Data sets that could not Goldrush) located near Arlington, WI. See data set 7.1 in Table 1 for

additional information.

1.0- ' I I 1.0 . I ILI) C')
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Fig. 1. Bacterial brown spot disease incidence values for individual snap Fig. 3. Bacterial brown spot disease incidence values for individual snap
bean plants (o) within a 5-in row segment. Disease incidence values are bean plants (.) within a 5-in row segment. Disease incidence values are
expressed as the proportion of diseased leaflets per plant. Data were expressed as the proportion of diseased leaflets per plant. Data were
collected in July 1986 from a commercial snap bean field (cultivar collected in July 1985 from a commercial snap bean field (cultivar
Galamore) located near Spring Green, WI. See data set 9.1 in Table 1 Goldrush) located near Arlington, WI. See data set 3.2 in Table 1 for
for additional information. additional information.

678 PHYTOPATHOLOGY



undulating changes in disease within a given data set and was component of negative correlation that gave the graphs of disease
detected by all three of the analysis techniques used in this study. versus plant position along the row their jagged appearance. This
In the runs test, it was evident as a smaller than expected number second type of nonrandom variability was not detected by either
of runs. In the autocorrelation analysis, this component was the runs test or by autocorrelation analysis. However, it was
detected as large, positive values in the sample ACF at lag 1, detected by ARIMA modeling and quantified by the -01c,_1 term
as well as at additional lags between 2 and 16, for most data in the ARIMA(0 1 1) and ARIMA(l 0 1) models. This negative
sets. Finally, this variability was described and quantified by the component of correlation did not appear to be present in those

1 Y,-1 term in the ARIMA(l 0 0), ARIMA(l 0 1), and data sets for which an ARIMA(l 0 0) model provided the best
ARIMA(0 1 1) models. fit. However, this may simply reflect an inadequate sample size

The presence of positive correlation between transformed for detecting a 01 of small magnitude. The situation for those
disease incidence values of adjacent plants is not surprising and data sets fit by an ARIMA(0 0 0) model is even more complex.
is consistent with the idea that disease occurs in localized patches Data sets that can be fit by this model can be generated by a
or foci. Although the presence of positive correlation was not process for which 0 1 and 01 are not zero as long as these parameters
entirely unexpected, the four data sets for which an ARIMA(0 1 1) are equal. ARIMA modeling cannot effectively estimate 01 and
model provided the "best" fit are somewhat disturbing. The 01 in this situation, and estimates of zero are the result.
theoretical autocorrelation structure of this model is such that, At present, the biological origin of both the negative and positive
as t approaches infinity, the variance V(Y,) becomes infinitely component of nonrandom variability is unknown. However, it
large. Thus the ARIMA(0 1 1) model is not consistent with the is interesting to note that all four classes of ARIMA models
nature of the biological data (proportion of diseased leaflets per that were fit to data sets in this study, including the ARIMA(0 00)
plant) in this study. Proportions and their arcsine square root model, are special cases of a single model that we call the
transformations have variances that cannot become infinitely "generalized ARIMA(l 0 1) model." This model has the following
large. Recall however that an ARIMA(0 1 1) model also can form:
be thought of as an ARIMA(l 0 1) model with 01 = 1. Several
other data sets in this study were described by an ARIMA(l 0 1) Y, = 01 Y,-1 + Et - Ole1t-± I 6
model with 4)1s between 0.9 and 1.0. Such a model is consistent
with proportion data because V(Y 1) for this model is finite for where values of 01 and 01 can range between -1 and 1 inclusive.
all t. This suggests that the "true" model for the four anomalous An ARIMA(0 0 0) model results from the generalized
data sets may be an ARIMA(1 0 1) model with 4)ls close to ARIMA(l 0 1) model when 01- 01. When -1 < q) < 1 (but
but less than 1. It also suggests that the superior fit of an not 0) and 01 0, an ARIMA(l 0 0) model results. Similarly,
ARIMA(0 1 1) model to these data sets may be due to sampling when both 4), and 01 are nonzero and -1 < 01 < 1, an
variability and relatively small sample sizes. ARIMA(l 0 1) model results. Finally, when 4)- 1 and 01 is

Superimposed on the dominant positive correlation was a nonzero, the generalized ARIMA(l 0 1) model is equivalent to
an ARIMA(0 1 1) model. The existence of a general model that
describes more than 90% of the data sets collected in this study
may indicate that the biological processes that generated these

CORRELATION data sets are not extremely diverse but are simply variations of

-1.0 -0.5 0.0 0.5 1.0 a single underlying process or group of processes.
__....___ .... ....___.... • No matter what its form, any proposed mechanism for the

development of brown spot must be consistent with the patterns
that we have observed. Mechanisms or models of disease

2 I development that rely on mean disease levels or that assume
' I homogeneous disease throughout a field are incomplete in the

3I sense that they ignore these patterns. Any hypothesized
4 mechanism also must be flexible enough to accommodate other

I patterns as they are discovered. This appears particularly

5 important for brown spot because we have preliminary evidence
6 suggesting that additional patterns of this disease exist both within

7and across rows (Hudelson et al, unpublished).7
I t The work outlined in this paper has stemmed from the

8 I application of an iterative sampling strategy, which we call
(f) "adaptive sampling," to the study of the spatial patterns of

I bacterial brown spot. The first step of this strategy, which we
o9 10 now have completed, involves sampling from an area of defined
<q1i 1 I size in a field and describing any spatial patterns within this area.

~Our initial sampling approach has involved observing every leaflet
12 I Ion every plant in a 5- or 12-in row segment. This method is

II

II14
I I TABLE 2. Comparison of results from runs analysis and autoregressive

15 --- integrated moving average (ARIMA) modeling for 37 5-in and one 12-
16 snap bean row segments

17 I Runs Z-value

18 I Z>±1.96 -- 1.96<Z<--1.65 -1.65< Unable
IARIMA or or Z to

19 Imodel Z<-1.96 +1.65<Z<+1.96 <±1.65 determine

20 000 2 0 5 3
Fig. 4. Autocorrelation function (ACF) for the data shown in Figure 1 0 1 11 0 2 0

2 after the data were transformed using an arcsine square root 0 1 1 3 1 0 0
transformation. The value of the ACF at lag s is the correlation of Unbet
transformed disease incidence values for all pairs of plants that are s dermn1020
plants apart. Dashed lines delimit approximate 95% confidence intervals. ________________________________
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extremely labor intensive and time consuming; however, it has 8. Chatfield, C. 1984. The Analysis of Time Series: An Introduction.
provided information of extraordinary detail. Such detail typically 3rd ed. Chapman and Hall, New York. 286 pp.
would not be available using more standard methods that rely 9. Cliff, A. D., and Ord, J. K. 1981. Spatial Processes. Models and
on sampling within quadrats. Applications. Pion Limited, London. 266 pp.

descriptive purposes, we have found ARIMA modeling 10. Cochran, W. G. 1977. Sampling Techniques. 3rd ed. John WileyFor bescrtivelpurpose s we an d modeling & Sons, New York. 428 pp.
to be particularly useful. As with any modeling approach, ARIMA I1. Delp, B. R., Stowell, L. J., and Marois, J. J. 1986. Evaluation of
modeling can provide only an approximation of the complex field sampling techniques for estimation of disease incidence.
phenomenon we are observing. In particular this method provides Phytopathology 76:1299-1305.
only a unidirectional description of a process that is undoubtedly 12. Diggle, P. J. 1979. On parameter estimation and goodness-of-fit testing
multidimensional in nature. However, even given this drawback, for spatial point patterns. Biometrics 35:87-101.
this technique is superior to runs analysis and autocorrelation 13. Diggle, P. J., and Cox, T. F. 1983. Some distance-based tests of
analysis because it is able to detect the negative component of independence for sparsely-sampled multivariate spatial point patterns.
nonrandom variability (that is, the jaggedness) in our data sets. Int. Stat. Rev. 51:11-23.

14. Durbin, J. 1960. The fitting of time-series models. Rev. It. Inst.In addition, this technique provides a quantitative description Stat. 28:233-244.
of the patterns that we have observed. 15. Elliott, C. 1920. Halo-blight of oats. J. Agric. Res. Washington, DC.

The quantitative description provided by ARIMA modeling 19:139-172.
is valuable in the theoretical development and evaluation of 16. Ercolani, G. L. 1973. Two hypotheses on the aetiology of response
sampling plans. To date, evaluation of sampling plans in the plant of plants to phytopathogenic bacteria. J. Gen. Microbiol. 75:83-95.
pathology literature has relied solely on the use of empirical 17. Freund, J. E. 1981. Statistics, A First Course. 3rd ed. Prentice-Hall,
techniques such as simulation studies (2,11,24,30,34). The patterns Inc., Englewood Cliffs, N. J. 466 pp.
observed in this study suggest exploring the use of random start 18. Gray, S. M., Moyer, J. W., and Bloomfield, P. 1986. Two-dimensional
systematic samples for estimating levels of bacterial brown spot distance class model for quantitative description of virus-infected plant
in a field. A random start systematic sample involves choosing 1distribution lattices. Phytopathology 76:243-248.
a startingpoin t a(field. hato istart stati ran invoiven chowind 19. Hau, F. C., Campbell, C. L., and Beute, M. K. 1982. Inoculuma starting point (that is, a plant) at random in a given row and distribution and sampling methods for Cylindrocladium crotalariae
then sampling every k-th plant along the row thereafter (10). in a peanut field. Plant Dis. 66:568-571.
Previous work has shown that random start systematic sampling 20. Hirano, S. S., Nordheim, E. V., Arny, D. C., and Upper, C. D.
will result in estimates of the mean level of disease that are less 1982. Lognormal distribution of epiphytic bacterial populations on
variable than estimates based on simple random sampling if the leaf surfaces. Appl. Environ. Microbiol. 44:695-700.
data follow certain forms of an ARIMA(l 0 1) model (10,22). 21. Hirano, S. S., Rouse, D. I., and Upper, C. D. 1987. Bacterial ice
These forms include a generalized ARIMA(1 0 1) model with nucleation as a predictor of bacterial brown spot disease on snap
(1¾ Ž 0 and 4), > 01. beans. Phytopathology 77:1078-1084.

Finally, ARIMA models also provide information that is useful 22. lachan, R. 1983. Asymptotic theory of systematic sampling. Ann.Finevally, saRMAmodlngplans asor p detectinforation thattens u l Stat. 11:959-969.
in evaluating sampling plans for detecting spatial patterns on 23. King, E. 0., Ward, M. K., and Raney, D. E. 1954. Two simple media
a variety of scales. In the development of our adaptive sampling for the demonstration of pyocyanin fluorescin. J. Lab. Clin. Med.
strategy, we are exploring the usefulness of systematic and other 44:301-307.
samples in detecting spatial patterns of bacterial brown spot in 24. Lin, C. S., Poushinsky, G., and Mauer, M. 1979. An examination
snap bean row segments that are greater that 12 m in length of five sampling methods under random and clustered disease
(Hudelson et al, unpublished), distribution using simulation. Can. J. Plant Sci. 59:121-130.

Our eventual goal is to describe the spatial patterns of bacterial 25. Lindemann, J., Arny, D. C., and Upper, C. D. 1984. Epiphytic
brown spot in commercial-size plantings of snap beans and populations of Pseudomonas syringae pv. syringae on snap bean and
understand the biological origins of these patterns. The results nonhost plants and the incidence of bacterial brown spot disease
fdromthisstandy sugge s biologicat ornspa th patterns . Te bespots (in relation to cropping pattern. Phytopathology 74:1329-1333.from this study suggest that spatial patterns of brown spot (and 26. Lindemann, J., Arny, D. C., and Upper, C. D. 1984. Use of an apparent
by inference, other plant diseases) may be numerous and complex. infection threshold population of Pseudomonas syringae to predict
We already have identified two patterns of brown spot incidence incidence and severity of brown spot of bean. Phytopathology 74:1334-
that occur within relatively short row segments (5 m). These 1339.
patterns provide an added complexity to the epidemiology of 27. Ljung, G. M., and Box, G. E. P. 1978. On a measure of lack of
this disease and we can begin now to explore the biological fit in time series models. Biometrika 65:297-303.
implications of these patterns. In addition, knowledge of these 28. Madden, L. V., Louie, R., Abt, J. J., and Knoke, J. K. 1982.sof more efficiently estimating brown spot Evaluation of tests for randomness of infected plants. Phytopathologypatterns suggests ways 72:195-198.lyetiatngbow so

in commercial bean fields which should prove useful to snap bean 72:195-198.
groersandprcesors Fialy, hrogh evlopentof ur 29. Madden, L. V., Louie, R., and Knoke, J. K. 1987. Tempoaf n

growers and processors. Finally, through development of our spatial analysis of maize dwarf mosaic epidemics. Phytopathologyadaptive sampling strategy, we expect to provide a research tool 77:148-156.
that will be useful for the study of spatial patterns in a variety 30. Mihail, J. D., and Alcorn, S. M. 1987. Macrophomina phaseolina:
of biological settings. Spatial patterns in a cultivated soil and sampling strategies.

Phytopathology 77:1126-1 131.
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