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ABSTRACT

Madden, L. V., Reynolds, K. M., Pirone, T. P., and Raccah, B. 1988. Modeling of tobacco virus epidemics as spatio-temporal autoregressive integrated

moving-average processes. Phytopathology 78:1361-1366.

Epidemics caused by tobacco etch virus (TEV) and tobacco vein mottling
virus (TVMV) were monitored in six experimental fields of tobacco in
Kentucky from 1983 to 1985, Fields were divided into contiguous quadrats
of 40 or 60 plants each, and disease intensity was represented as the logit of
disease incidence in quadrat 7/ at time ¢ (y). A spatio-temporal
autocorrelation analysis of 16 virus epidemics was performed by
calculating autocorrelations and partial autocorrelations for up to three
lags in time and space. As expected, y in each quadrat was highly correlated
(P << 0.01) with y in the same quadrat at the previous time (6 or 7 days
earlier, the approximate disease latent period), and also with y in the
neighboring quadrats at the previous time. Autocorrelograms indicated
that the epidemics were not stationary over time or space, i.e., expected
disease level depended on location and assessment period. Therefore,
simultaneous spatio-temporal differences (Vsry;, ;) were calculated;

autocorrelations and partial autocorrelations were determined for the
differenced data. Differencing eliminated all significant autocorrelations
and partial-autocorrelations in nine of 16 analyzed epidemics, suggesting
that the expected Vsiyi, equaled a constant. This means that y;, was
determined by y at the previous time in the same quadrat and the increase in
yinthe proximal quadrats, Six epidemics had significant and nondeclining
partial autocorrelations over time at zero spatial lags, indicating that, in
addition to the relation found for the first nine epidemics, y;, could be
represented by an autoregressive model with terms consisting of differenced
¥’ for three temporal lags but no spatial lags. Finally, one epidemic was
identified as being described by a mixed autoregressive moving-average
model. Here, y;; could be modeled as a function of the differenced y's and
differenced error (disturbance) terms at one temporal and spatial lag.
Interpretations of the identified models are presented.

Additional keywords: dispersion, Nicotiana tabacum, potyviruses, quantitative epidemiology, spatial patterns.

Epidemics caused by tobacco etch virus (TEV) and tobacco vein
mottling virus (TVMYV) are common whenever burley tobacco
(Nicotiana tabacum L.) is grown (5,16). Both of these potyviruses
are transmitted nonpersistently by several aphid species.
Previously, we showed that disease incidence due to both viruses
increased logistically in susceptible tobacco cultivars grown in each
of 3 yr in Kentucky, and in some years reached 100% (10).

The spatial pattern of virus-diseased plants was not constant
during these monitored epidemics, but changed systematically
overtime (11). A random pattern was indicated at the beginning of
the epidemics with several analytical techniques. Analysis based on
point patterns (18) indicated an increase in aggregation to a
maximum fairly early in the epidemics, and then a decline to a
random pattern. Spatial autocorrelation analysis (18) also

© 1988 The American Phytopathological Society

indicated an increase in aggregation over time that only declined
late in the epidemics, if at all. Results could be interpreted in terms
of true and apparent contagion (3,7) and the size of the clusters of
diseased plants in relation to the quadrat size (11).

Assessment of virus-disease patterns, as with almost all studies
of this type in plant pathology (7), was made by analyzing data at
each time of the spatio-temporal process of the epidemics. This
approach is limited to description because it is not possible to
directly identify and specify the dynamic process (i.e., spatio-
temporal transfer function [STF]) responsible for generating the
observed spatial pattern of disease incidence. Reynolds and
Madden (17) recently proposed the use of spatio-temporal
autocorrelation analysis to quantify the STF of an epidemic. With
this approach, disease values in each quadrat at each time are
correlated with disease values in the proximal quadrats and in the
same quadrat at the previous times, but not at the current time.
Thus, the temporal and spatial characteristics of a process are
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analyzed simultaneously. The basic theoretical aspects of this
analysis are described in detail by Bennett (2) and Martin and
Oeppen (12), and summarized by Reynolds and Madden (17).

The objectives of this study were to: conduct a spatio-temporal
autocorrelation analysis of the previously described virus disease
epidemics of tobacco over 3 yr in Kentucky (10,11); identify the
model order, within the general class known as spatio-temporal
autoregressive integrated moving-average models (STARIMA),
needed to represent the tobacco virus epidemics; and estimate
STARIMA model parameters where feasible.

MATERIALS AND METHODS

Data collection. A detailed description of the field
experimentation was presented previously (10,11). Only a brief
description is given here.

Six fields were planted with virus-susceptible burley tobacco
near Lexington, KY, from 1983 to 1985. The fields were established
in pairs (labeled A, B, and C) and one field of each pair was treated
throughout each growing season with insecticides to control aphid
colonization. Insecticide-treated and untreated fields were
designated -1 (e.g., A-I) and -N (e.g., C-N), respectively. Fields A
and B had 22 rows of 150 plants each; field C had 50 rows of 60
plants each. Virus disease incidence was assessed at least weekly
and based on symptoms. To maintain consistency in time period
between assessments, only observations separated by 5-7 days
(approximate latent period of both virus diseases) were analyzed.

Analysis. The A and B fields were divided into 15X 5 quadrats,
each consisting of 40 plants. Because of many missing plants, the B
fields of 1983 were not analyzed. The C fields were divided into
10 X 5 quadrats of 60 plants each. Because virus disease increased
logistically in the fields (10), the number of diseased plants per
quadrat was transformed to logits before spatio-temporal
autocorrelation analysis. The asymptote in the logit transformation
was set at the maximum number of plants per quadrat. The logit
transformation provided an additive scale to the data and also
stabilized variances.

Spatio-temporal autocorrelations (r;x) and partial autocor-
relations (i x) were calculated for three spatial (s =0, 1, 2, 3) and
three temporal (k = 1, 2, 3) lags using the program STAUTO of
Reynolds and Madden (17). Previously, these statistics were
represented as rogsx and Poosk (17): for simplicity, the zero
subscripts were eliminated here. The “rook’s” definition of spatial
proximity and binary distance weighting were used in all reported
analyses (17). Other proximity definitions yielded very similar
results (Madden, unpublished). Because one of the dimensions was

relatively low (= 5), high-order autocorrelations were dominated
by the within quadrat-row comparisons (17). Estimated r,x and ¢, x
were tested to determine if they were significantly different from 0
(P =10.01) using the tests described in Bennett (2).

The autocorrelations and partial autocorrelations were used to
identify an appropriate spatio-temporal autoregressive moving
average (STARMA) model of the following form to represent the
epidemic data:

! I r "
yu=% 2 BuLvis + 5 2 vekLEk [

+ut & (D
in which: y;, and y;,x are the logits of disease in quadrat i at times
and 1 — k; &, and £, are the error terms for the i-th quadrat at
times r and ¢ — k; L is the spatial operator as defined in Reynolds
and Madden (17), e.g., L'y;,—« is the average logit in the quadrats
one spatial lag (s = 1) away from quadrat  at time ¢ — k; and S,x,
sk, and u are parameters. The B and -y, x parameters define y;, as
alinear combination of the spatial and temporal lags of y;, and &;,.
The parameter u represents the mean y. The goal of STARMA
model identification is to specify a subset of equation 1 with the
smallest number of parameters (i.e., as many as possible of the
Bsx and y.x equal to 0) that precisely represents the data (12).
STARMA models without the L*§ -, terms are called spatio-
temporal autoregressive models (STAR); without the Lfy;— they
are called spatio-temporal moving-average models (STMA).
STAR models indicate that disease level in a quadrat depends on
disease level in the same quadrat and the proximal quadrats at
some previous time. STMA models indicate that disease level in a
quadrat depends on the errors (unexplained variability) in the
neighboring quadrats at some previous time. STARMA models
with differenced data (17) are called spatio-temporal
autoregressive integrated moving average (STARIMA) models.
The corresponding STAR and STMA models are called STARI
and STIMA, respectively.

Model specification, in which parameters are estimated, is
subsequent to model identification. For STARMA and STMA (or
STARIMA and STIMA) models, specification requires the use of
conditional maximum likelihood estimation (CMLE) (15).
However, least squares provide consistent parameter estimates for
the simpler STAR (or STARI) models (1). Standard deviations of
estimated parameters from least squares have no direct
interpretation.

RESULTS

Spatio-temporal analysis. The autocorrelations and partial

TABLE I. Estimated spatio-temporal autocorrelations for the incidence of virus-diseased tobacco plants in three Kentucky fields, using the rook’s definition

of spatial proximity®

Autocorrelations

Partial autocorrelations

Lag ] 1 2 0 1 2 3
A-N, 1985"
Spatial/temporal
1 0.91* 0.88* 0.84* 0.79* 0.62% 0.17* 0.07 =0.01
2 0.55% 0.51* 0.47* 0.44* 0.04 0.03 0.01 —0.02
3 0.06 0.00 -0.03 —0.06 0.07 0.09 =0.0 0.04
A-N, 1984"
Spatial/temporal
1 0.92* 0.91* 0.89* 0.87* 0.51* 0.13* —0.01 0.03
2 0.56* 0.54* 0.53* 0.48* 0.05 —-0.02 0.14* 0.06
3 —0.07 =0:13 —0.14 =0.17 0.10 0.08 —0.07 —0.05
C-N, 1984"
Spatial/temporal
| 0.87* 0.85% 0.85% 0.82% 0.59* 0.21* 0.19* -0.06
2 0.39* 0.38* 0.37* 0.32% 0.08 =0.13 —0.17* —0.03
3 -0.23 -0.28 —0.31* —0.34* 0.03 —=0.03 0.04 0.03

“The logit transformation was applied to each quadrat observation before the analyses.
"Field code: First letter represents field location (A, B, or C), second letter indicates treatment (N = no insecticides, | = insecticides), and numbers represent

year,
“Values followed by an * are significantly different from 0 at P =0.01.
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autocorrelations for up to three spatial and temporal lags are given
in Table | for three epidemics. These were chosen to exemplify
results for all 16 fields. The mean and variance of y at each time for
these fields are presented in Table 2. The autocorrelations were
very high at all spatial lags with one or two temporal lags (Table I).
The partial autocorrelations were fairly high at the first temporal
lag. These high values, especially for the first temporal lag and
spatial lags of zero and one, indicated that disease incidence in a
quadrat was highly correlated with incidence in the neighboring
quadrats at the previous time(s), and with disease incidence in the
same quadrat at the previous time(s). In fact, all of the epidemics
had large autocorrelations at the first temporal lag and spatial lags
of zero (ro1) and one (r11) (Table 3).

The small number of significant partial autocorrelations and the
declining autocorrelations with increases in lag would suggest a
low-order spatio-temporal autoregressive (STAR) model to
describe the epidemics (Tables 1 and 3) (2,12). To develop a model
of this type in which the parameters have physical meaning, data
must be stationary in level, i.e., the expected value of a variable
(e.g.. disease) must be independent of location or time (2,12).
Nonstationarity, however, was revealed by the autocorrelations
(Tables 1-3) and other evidence. As reported previously (10),
disease increased over time in these fields and, therefore, cannot be
considered time invariant, The slowly declining autocorrelations in
space at the low-order temporal lags (Table 1) indicated that
disease also was not space invariant. For example, at the first

TABLE 2. Mean and variance of logit-transformed virus disease incidence
for three tobacco fields in Kentucky

Field"
A-N-B5 A-N-84 C-N-84
Time Mean Variance Mean Variance Mean Variance

| —4.33  0.06 —-4.07 0.27 -3.05 0.55
2 —4.23 0.18 =3.60 0.57 -2.36 0.60
3 —3.95 043 -2.29  0.50 —1.67 0.53
4 —2.80 0.69 —1.54 0.38 -1.25 0.48
5 —=2.20 0.66 -0.96 0.34 —0.22  0.40
6 -1.27  0.54 0.04 033 097 033
7 -0.26  0.60 0.77  0.38 1.90  0.37
8 0.58  0.59 1.86  0.32 214 0.33
9 0.76 0.52

*First letter represents field location (A, B, or C), second letter indicates
treatment (N = no insecticides, [ = insecticides), and numbers represent year.

temporal lag of field A-N-85, the autocorrelations only declined
from 0.91 to 0.79 at spatial lags from 0 to 3 (Table 1). The spatial
invariance was confirmed by calculating autocorrelations with
spatial lags greater than 3, using the within-row definition of
proximity (Madden, unpublished).

Nonstationarity was removed by using simultaneous temporal
and spatial differencing (2,17). A new differenced variable was
calculated as:

sty = Wi = Yir1) = (L'Yie = L'yie-1) (2)

in which Vs is the difference operator. For modeling purposes,
Lsyi— and ¥, in equation | are replaced by L'Vsiy;,—« and
[*Vsréi -, and the new model is called a STARIMA model (17).

The analysis of the differenced data revealed few significant
autocorrelations (Tables 3 and 4). In fact, roy was never significant
and ry, was significant in only field C-N-84. This indicated there
was little correlation between the differenced y of a quadrat and the
differenced y in the proximal quadrats or the same quadrat at
previous times. Nine of the 16 fields, exemplified by A-N-84 (Table
4), had no significant partial autocorrelations (Table 3) after
differencing. Six fields, exemplified by A-N-85 (Table 4) had
significant negative partial autocorrelations at each temporal lag
and zero spatial lags. These partial autocorrelations did not show a
decline towards zero as the temporal lag increased. Only C-N-84
had a significant partial autocorrelation at a spatial lag exceeding
zero (Tables 3 and 4).

Maodel identification and specification. Epidemics in the nine
fields with no significant r; or i, for differenced data can be
represented by the simplest of the STARIMA models:

Vstvie = p + &, (3)

The maximum likelihood estimate of the parameter u is the mean
Vsryvir. The error term (&) is assumed to be normally and
independently distributed at all i and r with constant variance (0?)
which, with this simple model, has a maximum likelihood estimate
equal to the variance of Vsiy;,. Both pand o’ givenin Table 3 forall
epidemics.

Equation 3 can be restated in terms of the nondifferenced values
to obtain a model for logits:

Yir =Y T+ (L'yie— L'pi1) + p + i (4)

As written here, disease (expressed in logits) in quadratiat time ¢ is

TABLE 3. Estimated autocorrelations and partial autocorrelations at | temporal lag and 0 (ror. fro1) and I (rir. i) spatial lags for virus-discased tobacco
plants over 3 yr in Kentucky, together with the variance (¢°), and mean (g) for the differenced data

Logit-transformed disease incidence

Spatially and temporally differenced logits

Field o roi ri hor i I a rol ri oy iy
1985
A-I" 3.75 0.91*" 0.87* 0.68* 0.16* —0.0004 0.23 —0.05 0.03 -0.14 0.01
A-N 4.11 0.91* 0.88% 0.62* 0.17* —0.0002 0.23 —0.19 0.15 —0.25* (.04
B-1 2.26 0.89* 0.83* 0.71* 0.14 0.0000 0.31 0.11 —=0.21 =0.19 —0.15
B-N 4.24 0.87* 0.84* 0.59*% 0.21* 0.0032 0.27 —0.24 0.21 =0.12 0.09
C-1 2.57 0.83* 0.77* 0.59* 0.01 0.0016 0.24 =0.16 0.04 —0.34* -0.03
C-N 6.84 0.87* 0.86* 0.54% 0.18* =0.0022 0.25 =0.30 0.23 =0.31* —0.04
1984
A-l 4.38 0.89* 0.87% 0.49* 0.05 —0.0022 0.28 =0.07 0.03 =0.04 0.03
A-N 4.16 0.92% 091* 0.51* 0.13 —0.0026 0.24 —=0.19 0.19 —0.08 0.02
B-1 3.81 0.85* 0.82% 0.50* 0.04 =0.0009 0.21 =0.13 0.19 0.02 0.10
B-N 5.77 0.82% 0.79* 0.44* 0.08 0.0009 0.28 -0.08 0.09 ~0.06 0.01
C-1 4.54 0.87* 0.83* 0.53* 0.14 0.0000 0.26 —0.09 0.00 —0.22* =0.06
C-N 3.80 0.87* 0.85* 0.60% 0.21* —0.0040 0.14 —0.32 0.36* ~0.07 0.24*
1983
A-l 0.68 0.84* 0.46* 0.67* 0.22* 0.0009 0.23 =0.09 0.09 -(.05 0.03
A-N 1.26 0.88* 0.65% 0.69*% 0.20* ~0.0018 0.27 =0.11 0.12 ~0.06 0.04
C-1 1.50 0.76% 0.64* 0.57* 0.10 —0.0016 0.35 —0.25 0.18 —().29* =0.07
C-N 2.21 0.74* 0.71* 0.44% 0.15 =0.0011 0.27 —-0.25 0.18 —0.32* —0.08
“First letter represents field location (A, B, C), second letter indicates treatment (N = no insecticides, 1 = insecticides).

"Values followed by an * are significantly different from 0 at P =0.01.
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TABLE4. Estimated spatio-temporal dutocorrelations for the incidence of virus-diseased tobacco plants in three Kentucky fields, using the rook’s definition

of spatial proximity and spatial and temporal differencing”

Autocorrelations Partial autocorrelations
Lag 0 1 2 0 1 2 3
A-N, 1985"
Spatial/temporal
1 -0.19 0.15 —0.09 -0.03 —0.25* —0.04 -0.12 —0.08
2 =0.21 0.13 0.04 —-0.25 —(0.26* —0.06 —0.09 —0.20
3 0.01 —0.05 —0.02 0.10 —0.18* —0.07 =0.01 —=0.01
A-N, 1984
Spatial/temporal
1 -0.19 0.19 —-0.12 0.09 —0.08 0.01 —0.01 —0.01
2 —0.03 —=0.10 0.22 -0.03 =0.09 —0.03 0.13 0.02
3 0.03 0.01 0.07 —0.09 0.04 0.11 0.02 —=0.02
C-N, 1984
Spatial/temporal
I -0.32 0.36* 0.06 -0.20 =0.07 0.24* 0.07 —0.05
2 0.09 -0.12 —=0.11 0.16 0.05 0.03 0.04 0.11
3 0.10 ~0.05 0.06 0.04 0.12 -0.09 0.01 0.09

‘Thc logit transformation was applied to each quadrat observation before differencing and subsequent analyses.
"Field code: First letter represents field location (A, B, or C), second letter indicates treatment (N = no insecticides, | = insecticides), and numbers represent

year.
“Values followed by an * are significantly different from 0 at P = 0.01.

TABLE 5. Estimated spatio-temporal autoregressive (STAR) model
parameters for six tobacco virus disease epidemics in Kentucky

Parameter"
Field® B,y Boa Bos M MSE"
A-N-85 —(.28 —0.23 =0.10 —=0.0011 0.13
C-1-85 —0.22 =0.27 -0.28 0.0048 0.22
C-N-85 =0.34 —0.24 —0.17 =0.0036 0.24
C-1-84 —0.15 —0.18 =0.14 —0.0038 0.24
C-1-83 =0.31 -0.22 —0.18 =0.0057 0.33
C-N-83 —(0.29 —0.28 —0.22 —0.0036 0.16

“Estimated with least squares; see equation 6 for model statement.

"Mean square error; error variance after including autoregressive terms in
the model.
“Field code: First letter represents field location (A, B, or C), second letter
indicates treatment (N = no insecticides, | = insecticides), and numbers
represent year.

related to disease in the same quadrat at 1 — 1 and the change in
disease from 1 — 1 to ¢ in the neighboring quadrats. Large changes
in the neighboring quadrats are associated with large values of y; .
The very low estimates of u (Table 3) indicate that this constant
had little influence on the STARIMA model predictions. Further
evaluation of equation 4, assuming that ¢ = 0, revealed that
expected y;, equaled the mean y in the proximal quadrats at the
same time (L'y;,), plus the 5.patlal difference at the previous time
i1 = Lyu - 1 yi,- :equa]ed L'y;, then the cxpcctedy”would
equal L'y, If Yir—1t = L'y, then expected y;, > L'y, the
converse also would be true. The variance of the data associated
with the simple model (Eq. 3) (Table 3) was quite low compared
with the nondifferenced variance. (The mean for the
nondifferenced values is not given in Table 3 because it has no
physical meaning with nonstationary data.) The variance of the
differenced data is analogous to the residual mean square from a
regression analysis when the mean is close to 0, as in this study. One
can calculate the proportionate reduction in variance due to the
differencing (or proportion of variance accounted for) as a
measure of the appropriateness of the identified model. Except in
1983 when disease incidence was very low (10,11), the
proportionate reduction in variance exceeded 0.90.

The significant and nondeclining partial autocorrelations at zero
spatial lags (s= 0) suggested that a STAR model of the differences
(i.e., STARI model) would be appropriate for six of the 16
epidemics, including A-N-85 (Table 4) (2,12,15). An autoregressive
process should also exhibit exponentially declining autocor-
relations. In these epidemics, however, the ryx were low for all k and
no general decline could be seen (Table 4).
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A STARI model can be written as a special case of equation 1;

3
Vstvir = %, BoxVstyik + p + i (5)
in which Ly, -1 = yi,-1. Equation 5 can be reexpressed in the same
manner as equation 4 to describe y;, as a function of differenced
and nondifferenced variables:
;)

Vir = Y1 + (L'yis = L'yii) +£§, BoiVstviek + p + &is (6)
Inaddition to disease at the previous time in the same quadrat and
the change in disease from ¢ — | to r in the neighboring quadrats, y;,
is determined by the differenced y’s for quadrat i over three
temporal lags. Nevertheless, because of the very low
autocorrelations, it was expected that the influence of the
autoregressive terms would be slight.

Because computer programs for CMLE are not available, least
squares were used to obtain estimates of the autoregressive
parameters (Bo). For field A-N-85, the prediction equation, after
rearranging to obtain y;, on the left-hand side, can be written as:

Yit = Vi1 + (LIJ"F.J' = f-I_Vr',!- 1) = 0.28?5'1'_1’1’,:—1
—0.23Vs1yi-2 — 0.10Vs7y,-3 — 0.0011 (7)

Compared to the epidemics described by equation 4, y;, is reduced
somewhat by positive differences at the three temporal lags. The
residual mean square associated with equation 7 was 0.13, a 439
reduction compared to the variance (mean square) of 0.23
associated with the simpler equation 4. This variance reduction
was the largest for the six epidemics with significant partial
autocorrelations ats= 0 (Table 5). Four of the other five epidemics
had reductions of <<10% (Table 3).

Field C-N-84 had the only epidemic, after differencing, with a
significant autocorrelation and partial autocorrelation at a spatial
lag greater than zero (Table 3). Both ri; and y;; were significant.
No exponential decline to 0 in ryx or ¥, was observed, which
would have indicated an autoregressive or moving-average
process. Given these correlations, a reasonable model can be
written as:

Vstyie = BraL'Vsryi1 + yiiL'Vstéi + p + &, (8)
In this single field, the differenced disease values were not
independent of the differenced disease values at quadrats one or
more lags away. Rather, there was a positive association between
Vsiyi, and the differenced disease values at one spatial lag away at
t — 1. Additionally, the error at the first spatial lag (at r — 1) was



positively correlated with Vsry;,. Because of the lack of a CMLE
program, the parameters of equation 8 could not be estimated.

DISCUSSION

There was a very high correlation between the incidence of
virus-diseased tobacco plants in a given quadrat and incidence at
earlier times in the same and proximal quadrats. This high
correlation held over 3 yr in which maximum disease incidence
varied considerably (10) whether or not the plants were treated
with insecticides for aphid control. Because disease incidence was
neither time nor space invariant, simultaneous spatio-temporal
differencing was employed and autocorrelations were recalculated.
There were few significant correlations for the differenced data,
Analysis of these data led to the identification of a very simple
model (Eq. 3) for characterizing the virus disease epidemics. Based
on the identified STARIMA model, logit-transformed disease
incidence in quadrat i at time ¢ (y;,) was determined by disease in i
at approximately one latent period earlier (y;i 1), the change in
disease in the proximal quadrats from ¢ — 1 to r (L'y;, — L'y,-,,-r},
plus a constant (u). The estimated u was always near zero and,
therefore, had little influence on the model predictions. This
relationship is the spatio-temporal equivalent of a “random walk”
process (2).

Six of the epidemics had some characteristics of an
autoregressive process in time but not space, indicating that the
differenced disease values were not independent. Because of the
negative temporal autocorrelations, a large Vsry;,— would result in
a smaller Vsry;,. On the average, small values would be followed by
large values, and vice versa. However, this autoregressive process
comprised a minor part of even these six epidemics based on
several lines of evidence. Partial autocorrelations but not the
autocorrelations exhibited the expected patterns for an
autoregressive process. Additionally, least squares fit of the
autoregressive model to the data reduced the variance by less than
50%. In fact, the variance was reduced less than 109 for four of the
six epidemics.

Interestingly, five of the six autoregressive epidemics
corresponded to the C fields, which had fewer quadrats and mere
plants per quadrat than the A and B fields. This partitioning of the
fields was based on physical dimensions, and it was not possible to
obtain the same quadrat number and size in all cases. Previously
(11), we determined that the currently used quadrat sizes were
optimum for quantifying disease patterns at individual times in the
tobacco fields. If quadrat size was not optimum for spatio-
temporal analysis, we would have expected to observe significant
autocorrelations and partial autocorrelations after spatio-
temporal differencing at spatial lags greater than zero.

Only the analysis of one epidemic after differencing gave
evidence of an autoregressive or moving-average process at spatial
lags greater than zero. There was a significant autocorrelation and
partial autocorrelation at k= | (i.e., t — 1) and s = 1, suggesting
equation 8asa Possiblc model for the epidemic. The autoregressive
component (L Vsry;,-) suggested that there were generalized
epidemic effects in the field. This is because Vsryi,— is correlated
with its first-order neighbors, which are, in turn, correlated with
their first-order neighbors, and so on. The moving-average
component (L'Vsi&,) suggested there were unexplained inputs
and localized effects in the field (2,12), such as variable
environment or variation in vector numbers, that influenced this
epidemic. We have no other data that would explain the results for
this single field.

In our previous report on the spatial patterns of virus-diseased
tobacco plants (11), we showed that spatial autocorrelations at
individual times changed during the epidemics. This dynamic
nature of pathogen or disease aggregation has been demonstrated
now in several other pathosystems (7-9). Our previous analysis of
the tobacco system was based on the number of virus-diseased
plants per quadrat. In the current analysis, we used logits to
provide an additive scale to the data and obtain a stationary
variance (17). Many other transformations could have been chosen
with the program STAUTO. A spatial autocorrelation analysis of

logits at individual times showed the same trend in the
autocorrelations during the epidemic as found with the
untransformed data (Madden, wnpublished), ie., a general
increase over time and then sometimes a decrease when disease
incidence was very high. Based on a spatio-temporal
autocorrelation analysis of these epidemics, we can attribute this
trend toa simple STARIMA process as represented by equation 3.

Unlike the results given here, there was no evidence for spatial
nonstationarity when spatial autocorrelations were determined at
individual times (11). In other words, at any given time 1, expected
disease level did not depend on the location in the field. Over all
times, however, there was strong evidence for spatial
nonstationarity, indicating that expected disease incidence
depended on the location. Note that with spatio-temporal analysis,

Yiy is not correlated with values at the same time, but at previous

times. Apparently the spatial invariance detected when the
temporal component of the epidemic is considered is masked when
spatial data analyses are done at individual times.

The spatio-temporal process of an epidemic can be quantified
and modeled from different perspectives (7,8.13). One mechanistic
approach is to modify a differential equation for disease increase
with time (such as the logistic) to incorporate the spatial pattern of
disease (19). Another mechanistic approach is to expand the
differential equation to incorporate the movement of propagules,
or spread of disease, from one location to the next (4,6,13). Except
for some situations, such as only two locations (e.g.. two rows) (4),
spread along a line (single row) (13), a single focus (6), or constant
aggregation (19), these approaches are very complex and often
require computer simulation to use effectively. Although
extremely valuable in theoretical epidemiology, it can be very
difficult or impossible to describe actual epidemic data with these
models except qualitatively.

The great advantage to the autocorrelation approach is that
epidemics can be analyzed as spatio-temporal processes, if the
proper computer program is available, and one can identify
appropriate STARIMA models that account for the distribution
of data. Although essentially a statistical technique, model results
can often be interpreted biologically or physically (2,15), or at least
suggest the proper biological questions to ask. Ultimately, one
could even use autocorrelation analysis to evaluate predictions
made by more mechanistic models. In conclusion, spatio-temporal
autocorrelation analysis is a valuable addition to other techniques
for describing virus disease epidemics.
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