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ABSTRACT

Coakley, S. M., Line, R. F., and McDaniel, L. R. 1988. Predicting stripe rust severity on winter wheat using an improved method for analyzing

meteorological and rust data. Phytopathology 78:543-550.

An improved method was used to determine more precisely than
previous methods the relationship of meteorological factors and stripe rust
(caused by Puccinia siriiformis) on winter wheat cultivars Gaines,
Nugaines, and Omar at Pullman, WA. A computer program WINDOW
was written and used to analyze meteorological data for 1967-1984 in
segments of 21-65 days beginning on 29 July of each year and ending on 24
July of the following year. Meteorological factors were used as the
independent x-variables in multiple regression with disease index (DI) used
as the dependent y-variable. For each cultivar, four statistical models (two
two-variable and two three-variable) provided more accurate predictions
than either the local or regional models previously used in the Pacific
Northwest. The three-variable models had adjusted R’ = 0.73-0.88, and
were 89-100% accurate for predicting rust severity. Contingency
quadrants were used to evaluate accuracy of predicted DI versus actual DI.

Winter temperature and spring precipitation factors were included in the
proposed three-variable models and were positively correlated with DI,
Two models for each cultivar were “predictive”in that they could have been
used early enough in the season to allow application of fungicides if severe
disease had been predicted. The number of days with maximum
temperature greater than 25 C was important in each full-scason model,
For Gaines and Nugaines (cultivars with high-temperature, adult-plant
resistance), high temperatures were necessary for their resistance. The
frequency of this factor from 21 April to 26 June was highly correlated (r=
—0.88 and —0.90) with DI. However, for Omar, a cultivar without
resistance, that factor was not important until June, Model validation
included making DI predictions for 1985 and 1986, years not used in model
development. The models should be used with caution whenever input data
exceeds the range of the modeled data.

Additional keywords: empirical models, linear regression, quantitative epidemiology

A method for quantifying the relationship between climatic
factors and stripe rust of wheat ( Triticum aestivum L. em Thell),
caused by Puccinia striiformis West., resulted in the development
of statistical models to predict stripe rust severity on winter wheat
in the Pacific Northwest (3,4,7). Those models were used in
combination with other information on disease occurrence to
predict rust severity early in the growing season so that fungicides
could be applied in a timely way if necessary (6,12). However, the
methods were not applicable to analyzing how climatic factors
affect Septoria tritici blotch on wheat, caused by Mycosphaerella
graminicola Fuckel (Schroeter). Therefore, a general method of
analyzing relationships between disease severity and meteorological
conditions was sought that could be applied to many different
diseases on a wide variety of hosts. The method required that
analysis of meteorological data could begin and end on any
selected date; that all types of meteorological parameters could be
examined; and that nonmeteorological variables could be included
in model development. Ideally, the methodology would allow the
development of statistical models that could be used to predict
disease in time to decide on the use of control measures.

With these goals in mind, a statistical model was developed to
predict Septoria tritici blotch in Indiana on day of year (DY) 170
(17 June, 26 days after the average heading date of 22 May). The
two meteorological variables in the model were total consecutive
days without precipitation between 26 March and 4 May and total
consecutive days when the minimum temperature was equal to or
less than 7 C between 4 April and 3 May. These variables explained
86% of the variation in disease severity among years. This model
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predicted disease severity approximately 18 days before heading,
which allowed time for application of a fungicide when severe
Septoria tritici blotch was predicted (9).

Because the method used to develop the Septoria tritici blotch
model was intended to be useful in analyzing other disease data, it
was then tested on stripe rust data. This paper describes the use of
an improved method to analyze for interactions between
meteorological factors and stripe rust severity and to develop
statistical models to quantify the relationship between climate and
disease. The statistical models developed were evaluated and
compared with the previously published models (3,5-7) used to
predict stripe rust in the Pacific Northwest.

MATERIALS AND METHODS

Disease data base. Stripe rust severity (percentage of the total
leaf and glume surface covered by rust) was recorded for several
hundred cultivars and breeding lines of wheat planted in single
rows 1.5-3.0 m long at multiple sites in the Pacific Northwest. Each
row had more than 100 plants and some sites had multiple rows of a
single cultivar. An average value for disease severity along with
infection type was recorded for each row at various stages of plant
growth. Three winter wheat cultivars were selected from the data
base for Pullman, WA: the susceptible cultivar Omar, and the
high-temperature, adult-plant resistant cultivars Gaines and
Nugaines. Data recorded at growth stages 7 (milk) or 8 (dough)
(22) were selected, and disease severity was converted to a (—9
disease index (DI) (footnote a, Table ). Discase data were
available for 1968 to 1986 for one to four geographically distinct
areasaround Pullman, and the DI used (Table 1) was an average of
available data for each year.

Meteorological data base. Daily maximum and minimum
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temperature and precipitation data for July 1967 through July
1986 were obtained from the National Climatic Data Center,
Asheville, NC: the Pullman meteorological station is located at lat.
117912° W, long. 46° 46" N at an elevation of 775 m. Negative degree
days (NDD)and positive degree days (PDD) were calculated from
the daily average Celsius temperature using a base of 7 C (7).

The following meteorological variables were considered: NDD,
PDD, mean maximum temperature (MMAX)(C), mean minimum
temperature (MMIN), mean average temperature (MAVE), total
precipitation (TPREC) (mm), precipitation frequency (PFREQ),
total consecutive days that the minimum temperature was less than
7 C(DL7C). total days that the average temperature was less than 0
C (DLOC), total days that the maximum temperature was greater
than 25 C (DG25C), total consecutive days with precipitation
(CDWP), and total consecutive days without precipitation
(CDWOP).

Consecutive days were counted as described by Shaner and
Finney (17). only sequences of two or more days that meet a
specified criterion (e.g., CDWP) were counted and summed for a
window subset. Forexample, if there were 5-, 4-, and 2-day periods
with precipitation, these would be counted as 4, 3, and 1 CDWP
and would be summed to give § CDWP.

Data analysis. The WINDOW program for the analysis of the
Septoria data (9) was modified to improve its efficiency and
flexibility in identifying the climatic variables that were most
highly correlated with disease data (8). All calendar dates were
converted to DY, in which | January = DY | and 31 December =
DY 365 or 366 in leap years (16,20). For this analysis the starting
date was 29 July (DY 210) of one year and the ending date was 24
July (DY 205) of the next year, which was before harvest of the
plots in August. The plots were planted each year in the first two
weeks of October.

Meteorological data were averaged or summed in variable-
length time periods (windows) that were sequentially examined.
Each set of windows consisted of nine subsets, the first being the
full-length window and the other eight being progressively smaller
subsets (Fig. 1). The nine subsets used initially were 65, 60, 55, 50,
45, 40, 35, 30, and 25 days in length (Fig. 1, window set P). To
examine specific time periods in more detail, selected window
subsets were set only one day shorter than the previous one, e.g.,
65. 64, 63....57 days in length,

TABLE 1. Disease indices for severity of stripe rust on three cultivars of
winter wheat at Pullman, WA, from 1968 to 1986

Disease Index at growth stage 8 (dough state)”

Year Nugaines Gaines Omar
1968 S.00E 6.50E
1969 2.00 2.00 3.50
1970 2.00 3.00 7.00
1971 5.00 5.75 8.25
1972 2.50E 4.00E 6.00E
1973 3.00 3.50 7.50
1974 1.00 3.00 5.00
1975 5.75 6.25 7.50
1976 7.00 6.50 7.00
1977 0.00 0.00 3.00
1978 3.50E 6.25E 7.50
1979 3.00 3.00 7.00
1980 4.00 5.50 8.50
1981 7.20 7.50E 9.00E
1982 3.25 2.00 3.50
1983 4.00 5.67 7.83
1984 6.00 6.38 8.38
1985 2.00 2.00 2.00
1986 2.50 2.50 2.50
Mean 3.78 4.52 6.65

"The 0-9 scale disease index (DI) is based on converting percent disease
intensity to DI where 0 = 0% disease, | <16, 2= 1-5%, 3 = 6-209%, 4 =
21-409%, 5=41-60%. 6= 61-80%.7=81-95%, 8 =96-99%, and 9 =99%.
When disease data were available for growth stage 7 but not stage 8 (those
indicated by “E"). the DI for stage 8 was extrapolated based on DI and
infection type at stage 7 as described in Coakley et al (7 ).
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Figure | gives an example of how the data were sequentially
analyzed. The first nine subsets (window A) began on DY 5 and
ended 65 days later on DY 69; data for each of the 12 selected
climatic variables were assembled for each of the nine subsets of
this window. The window was advanced 5 days, and data were
assembled for the nine subsets in windows B, C, etc. To examine
the data in more detail, windows were then advanced by only 1-day
increments. The meteorological data were examined for a year in
two segments; in segment I, the first window set began on DY 210
and the last began on DY 365. Insegment 11 (part of which is shown
in Fig. 1), the first set began on DY 5 and the last set began on DY
140 and ended on DY 204.

For each meteorological variable, the WINDOW program
either calculates a mean (e.g.. mean average temperature), counts
(e.g., total days with maximum temperature greater than 25 C), or
sums a cumulative total (e.g., negative degree days) for the subset.

WINDOW analyzed correlation to determine if any relationship
existed between the meteorological factors and disease severity.
Data were printed out for windows when the correlation
coefficient for at least one variable was significant at P< 0.05.
Windows with the highest correlation coefficients were further
analyzed to identify the most precise time period for a variable that
would give the highest correlation with disease severity. The
window sets were advanced only one day at a time, and each
window subset was only one day shorter than the previous subset
(8).

Development and evaluation of models. Meteorological factors
that were highly correlated with disease severity were selected for
multiple regression analysis to determine the mathematical form of
the relationship. The Statistical Analysis System (SAS) programs
used for regression analysis were REG, RSQUARE, and
STEPWISE (15). The independent variables were meteorological
factors and the dependent variable was the DI for each year.

SEQUENCE OF WINDOWS

L | L | 1 | 1 | 1 | 1 | 1 |
365 20 40 60 80 100 120 140

DAY OF YEAR

Fig. 1. Diagram of how meteorological data are considered by the
WINDOW program. Each set of windows has nine subsets; window set A
starts on day of vear (DY) 05 and the subsets are 65, 60, 55, 50, 45, 40, 35, 30,
and 25 days in length. After the meteorological data are assembled for
window set A, the window is advanced 5 days to window set B, where all
subsets begin on DY 10. This is repeated for window sets C—P; thus window
P begins on DY 80 and ends on DY 144, From Coakley et al (8).




RSQUARE was used to evaluate all possible models up to a
maximum of three independent variables. STEPWISE used four
regression methods for generating models: forward, backward,
stepwise, and maximum R’ improvement. Two-and three-variable
models from STEPWISE and RSQUARE were evaluated to
determine whether they appropriately described the relationship
between meteorological factors and DI. Each variable was
examined as to type of factor. Models that had two overlapping or
highly correlated variables were excluded from further evaluation.

The REG procedure of SAS was used to develop the selected
models. The models were evaluated for minimization of standard
errors of the predictions, stability of the regression coefficient
signs, plotting of studentized residuals against predictions and
time, variance inflation factors (VIFs) of the coefficients, and the
accuracy of the predictions that were made for the years included in
development of the model. The best models show stability of
regression coefficient signs, random distribution of residuals, and
VIFs less than 5. Adjusted R® was used to compare the models
because it takes into account the number of variables included in
the regression and allows comparison of models with different
numbers of x-variables.

Model validation determined how the model functioned in its
intended use and included analysis of model coefficients and
predicted values (21), data splitting using Allen’s predicted error
sum of squares (PRESS) statistic (9,10,13,19), and collection of
new data to check model predictions. Allen’s PRESS statistic was
calculated using the SAS procedure REG.

The accuracy of the predictions was determined using
contingency quadrants (Fig. 2A). When the DI was greater than
5.5 (= 609% severity), stripe rust was severe without chemical
control and yield would be at least 209 lower than if chemical
control were used (5). When the DI was 5.5 or less, disease was
moderate or light and chemical control would be less beneficial.
Figure 2A was used to evaluate how many times the predicted DI
agreed with the actual DI in quadrant I, both predicted and actual
DI were 5.5 or less, whereas in quadrant 1V, both predicted and
actual DI were greater than 5.5. If all predictions fell into
quadrants | and 1V, all predictions of severe disease would be
correct. In quadrant 11, actual disease was greater than 5.5 but
predicted DI was 5.5 or less (underprediction). In quadrant 111,
actual DI was 5.5 or below but the predicted DI was greater than
5.5 (overprediction). The percentage accuracy of a model was
defined as the total number of years in quadrants  and 1V divided
by the total number of years for which predictions were made. The
percent inaccuracy of the model could also be calculated from the
contingency table, either as percent overprediction, under-
prediction, or total inaccuracy.

RESULTS

Model development. Disease indices for 1968 to 1984 on
Nugaines and Gaines and for 1969 to 1984 on Omar wheat (Table
1) were correlated with numerous meteorological factors. The
meteorological factors with the highest correlation coefficients
(Table 2) were used to develop models to predict disease severity
indices.

Regression analysis of the meteorological factors (Table 2) and
the disease indices for each cultivar (Table 1) resulted in
development of numerous two- and three-variable equations with
adjusted R® greater than 0.75. Models N-1to N-1V, G-I to G-1V,
and O-1to O-1V (Table 3) were selected for Nugaines, Gaines, and
Omar, respectively, by the criteria described above. Models I and
Il for each cultivar and the Pullman NDDZ (PNDDZ) and
Regional NDDZ, FDS (RNDDZ) models (footnote a, Table 3;
3.7). are “predictive™ because they use factors that occur early
enough (4 June or earlier) to decide whether to apply a fungicide
when severe stripe rust is predicted (DI > 5.5). Models 11 and IV
for each cultivar included the meteorological factors with the
highest correlation with DI, but they were not considered to be
predictive because they could not be used to decide on control
practices in a current season. The most important factor, total days
with maximum temperature greater than 25 C,ended on DY 177 or

179, which would be too late in the season for application of
fungicides.
Model evaluation. For models I to IV of each cultivar (Table 3),
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Fig. 2. A, Contingency quadrants used to determine the accuracy of disease
predictions relative to actual disease index. In quadrants | and IV, actual
disease and predicted discase are in agreement. In quadrant I1, disease was
severe but an underprediction of disease is made; in quadrant 111, disease
was moderate or light but an overprediction of disease is made. The
accuracy of a model in making correct predictions of severe disease can be
calculated as percentage accuracy = quadrant I+ quadrant 1V /n, where n=
total number of predictions. B, Actual number of years that fall in each of
four quadrants (I, I1. 111, 1V) defined in 2A. Model equations for cach
cultivar are given in Table 3.
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the residuals appeared as random-scatter data points, Had the
points shown nonrandom distribution of residuals, they would
have been used to diagnose the type of deficiencies in the model.

The VIFs were less than 2.70 for all model coefficients and were
frequently close to 1. This indicated that the model coefficients
were properly estimated and stable.

A comparison of the two- and three-variable models for the
cultivars showed that the addition of the third variable improved
the adjusted R” from 0 to 6% (Table 3). To evaluate whether this

slight increase was important, predicted DI was plotted against
actual DI for all models for all cultivars (G-1, G-11, G-111, and G-1V
and N-1V and O-1V are given in Fig. 3). The three-variable models
(ITand 1V) for each cultivar were only slightly closer to the slope of
1 than their comparable two-variable models. However, with a
two-variable model, there is one less variable to calculate.

The accuracy of each model’s predictions was calculated for
1968-1986 for Gaines and Nugaines, and for 1969—1986 for Omar
(Fig. 2B). Models 11 and IV foreach cultivar, which were based on

TABLE 2. Meteorological factors most highly correlated with disease index for stripe rust on Nugaines, Gaines, and Omar wheat at Pullman, WA, when
using the WINDOW program”

Nugaines Gaines Omar
Meteorological  Beginning date  Time Correlation Beginning date  Time Correlation Beginning date  Time Correlation
factor” (day of year) (days) coefficient (day of year) (days) coefficient (day of year) (days) coefficient
MMIN 276 (10 Oct) 37 0.69a
358 (24 Dec) 21 0.71a
MMAX 004 (4 Jan) 21 0.71a
PDD 314 (10 Nov) 23 —().74a
DLOC 360 (26 Dec) 21 —0.74a 363 (29 Dec) 22 —0.81 356 (22 Dec) 49 —0.63b
001 (1 Jan) 24 —0.74 363 (29 Dec) 24 —0.63b
DG25C 111 (21 Apr) 68 —0.90 113 (23 Apr) 66 —0.88 155 (4 June) 22 —0.86
TPREC 074 (15 Mar) 21 0.80 073 (14 Mar) 23 0.75 072 (13 Mar) 21 0.74a
PFREQ 073 (14 Mar) 43 0.73 069 (10 Mar) 49 0.67a 106 (16 Apr) 48 0.75
076 (17 Mar) 39 0.72a 073 (14 Mar) 28 0.66a
076 (17 Mar) 25 0.69a 079 (20 Mar) 69 0.68a
095 (5 Apr) 59 0.74 080 (21 Mar) 38 0.64a
095 (5 Apr) 59 0.70a
138 (18 Mar) 41 0.76
cCDhDwp 106 (16 Apr) 49 0.79
106 (16 Apr) 66 0.82
cCDwoPpP 139 (19 May) 46 —0.78

“The WINDOW subset is designated by the beginning date measured by the calendar day of the year and duration (time) measured by days; e.g., mean
maximum temperature with a begining date of 004 and a time of 21 beginning on day 004 (4 Jan) and ending on day 24 (24 Jan), The correlation coefficients
(r) are significant at P< 0.001. When an “a” follows the r, P< 0.01; a “b" indicates that P < 0.05.

"MMIN = Mean minimum temperature; MMAX = mean maximum temperature; PDD = positive degree days; DLOC = total days average temperature less
than 0 C: DG25C = total days maximum temperature greater than 25 C; TPREC = total precipitation; PFREQ = precipitation frequency; CDWP = total
consecutive days with precipitation; CDWOP = total consecutive days without precipitation.

TABLE 3. Models® for predicting disease index (DI) for severity of stripe rust on Nugaines, Gaines, and Omar winter wheat at Pullman, WA, with the
regression coefficients (8). meteorological variables (x), adjusted-R" (adj-R"), and Allen’s predicted error sum of squares (PRESS) statistic and percentage
(%) accuracy”

Statistic

2 Accuracy
Model D1 = gy + Bixi + Baxa + Baxs Adj-R’ PRESS (%)
Nugaines model
PNDDZ = 3917 — 1.339 NDDZ 335 0.52 79
RNDDZ = 1.997 — 1.150 NDDZ 335 + 0.016 FDS 0.41 82
N-1=2.932 + 0.220 MMIN 358 + 0.678 TPREC 074 0.76 229 89
N-11 = 1.660 + 0.429 MMIN 276 + 0.153 MMIN 358 + 0.648 TPREC 074 0.76 26.3 89
N-111'=7.548 + 0.148 MMIN 358 — 0.277 DG25C 111 0.85 12.6 89
N-IV = 5741 + 0.140 MMIN 358 + 0.301 TPREC 074 — 0.206 DG25C 111 0.88 11.7 95
Gaines model
PNDDZ = 4.500 — 1.547 NDDZ 335 0.74 79
RNDDZ = 1.575 - 1.417 NDDZ 335+ 0.025 FDS 0.60 76
G-1=-2.187 + 0.454 MMAX 004 + 0.271 PFREQ 095 0.75 234 84
G-11 = —1.344 + 0.406 MMAX 004 + 0.315 TPREC 073 + 0.182 PFREQ 095 0.76 24.2 89
G-111=6.752 + 0.322 MMAX 004 — 0.276 DG25C 113 0.88 10.9 95
G-IV = 5.940 + 0.309 MMAX 004 + 0.039 PFREQ 080 — 0.256 DG25C 113 0.88 11.2 100
Omar model
PNDDZ = 5909 — 1.832 NDDZ 335 0.60 67
RNDDZ = 2.340 — 1.897 NDDZ 335 + 0.038 FDS 0.71 81
O-1= 10402 - 0414 PDD 314 — 0.101 DLOC 356 0.71 27.5 83
O-11 = 6.539 — 0.289 PDD 314 — 0.087 DLOC 356 + 0.187 PFREQ 106 0.73 279 89
O-111=8.770 — 0.256 PDD 314 — 0.253 DG25C 155 0.81 239 89
O-1V =10.132 — 0.256 PDD 314 — 0.061 DLOC 356 — 0.199 DG25C 155 0.87 17.3 94

"PNDDZ = Pullman NDDZ model (3); RNDDZ = Regional NDDZ, FDS model (7); Models 1-1V were developed for each cultivar using the methods
described in this paper. NDDZ = standardized NDD accumulated from | December to 31 January (3); FDS = first day of spring (previously called JDS) for
cach location and is defined by the accumulation of = 40 positive degree days over the next 14 days. For Pullman, FDS=111(7). MMIN = mean minimum
temperature: MMAX = mean maximum temperature; TPREC = total precipitation; PFREQ = precipitation frequency; DG25C = total days maximum
temperature greater than 25 C; DLOC = total days average temperature less than 0 C; PDD = positive degree days.

"Based on Figure 2, percentage accuracy = quadrant | + quadrant 1V n, where n= total number of years predictions were made for 1968 to 1986 (1969 to
1986 for Omar) with each model.
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Fig. 3. Relationship between actual disease index (DI) and predicted Dl on winter wheat for 1968—1986 at Pullman, WA. Predictions in (a) to (d) are for
Gaines models G-1to G-1V; (e) is for Nugaines N-1V; and (f) is for Omar O-IV described in Table 3. The slope of the line = | and would occur if DI = Dl inall

cases.
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the meteorological factors for the full season, improved the
accuracy of the predictions the most for Gaines and the least for
Nugaines (Table 3) when compared with models I and 11 for each
cultivar. A comparison of actual DI versus predicted DI for all
models showed that predictions were consistently closer to actual
DI for models I11and IV than for the other models (for Gaines, see
Fig. 3A-D).

Model validation, Models N-11I and N-1V and G-111 and G-1V
had PRESS statistics that were about one-half the size of those for
models N-I, N-11, G-1, and G-I (Table 3).

The models also were validated by making predictions for 1985
and 1986 (years that were not included in model development and
years when severity of stripe rust was unusually low) and
comparing predicted DI with observed DI (Table 4). Using the
criterion of model accuracy, all models for all cultivars (except
O-111) correctly predicted DI in 1985. For 1986, models G-I11 and
G-1V and all Nugaines models correctly predicted DI, whereas the
Omar models consistently overpredicted DI (Table 4). Accurate
predictions can be expected only for the range of meteorological
factors included in model development (Table 5). When the models
are applied to new meteorological data, their values should be
compared with the model’s existing range. For Omar in 1985, the
DLOC starting on DY 356 was 48 days, whereas the range in O-I,
O-11,and O-1V was 11-43 days (Table 5). In this case, the predicted

TABLE 4, Comparison of actual disease index (DI) and predicted DI for
1985 and 1986 using the Pullman NDDZ model (PNDDZ); Regional
NDDZ, FDS model (RNDDZ); and models I, 11, I11, and IV (Table 3) for
each cultivar

Predicted D1* using models:

Actual

Year D1 PNDDZ RNDDZ | 11 11 v
Nugaines

1985 2.0 2.2 23 39 34 2.2 2.7

1986 2.5 3.5 35 2.7 27 03 0.2
Gaines

1985 2.0 2.5 25 1.5 23 2.2 24

1986 2.5 4.0 4.0 6.4% 5.5 1.5 1.7
Omar

1985 2.0 3.5 4.0 4.9 49 6.6% 5.4

1986 2.5 5.4 6.0* 8.4* 8.7  60* 6.7*

‘Predicted Dls followed by an asterisk are when the prediction was for
severe disease, but the actual disease was light.

TABLE 5. Unit of measurement, mean value, standard deviation, and
range of x for each meteorological factor of models | to IV (Table 3) for
Nugaines, Gaines, and Omar winter wheat

Meteorological Unit of Mean Standard
factor" measurement value deviation  Range of x
Nugaines
DG25C 111 days 9.94 4.9 2-19
MMIN 276 (2 2.14 0.8 0.15-3.53
MMIN 358 C —6.83 3.6 —15.29-2.00
TPREC 074 cm 3.47 1.6 0.66-7.03
Gaines
DG25C 113 days 9.94 4.9 2-19
MMAX 004 C 1.59 2.4 —4.23-6.25
TPREC 073 C 3.79 1.6 0.69-7.03
PFREQ 080 days 16.41 4.8 6-25
PFREQ 095 days 2212 39 16-31
Omar
DG25C 155 days 6.06 4.7 0-15
PDD 314 PDD 2.29 2.6 0-9.2
DLOC 356 days 27.81 8.0 11-43
PFREQ 106 days 17.12 2.7 12-22
"MMIN = Mean minimum temperature; MMAX = mean maximum

temperature; TPREC = total precipitation; PFREQ = precipitation
frequency; DG25C = total days maximum temperature greater than 25 C;
DLOC = total days average temperature less than 0 C: PDD = positive
degree days.
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DIs for these models were closer to actual DI than was the
overprediction made by O-111 which did not include a winter
temperature factor. In 1986, the DG25C factors in the Gaines and
Nugaines models Il and IV were 24 and 25 days, respectively.
Model development included only a range of 2-19 days (Table 5)
for this factor. The effect in this case was to reduce predicted_ DI
below that which occurred. For Nugaines, N-I11 predicted a DI =
—0.3 which is outside the possible disease range. However, the
predictions for N-II1 and N-1V and G-Ill and G-1V were accurate
in that actual DI was very low and did not require any control
measures.

Comparison of newly developed models with Pullman and
regional NDDZ models. Predictions from the models for each
cultivar were compared with the PNDDZ (3) and RNDDZ models
(7). The PNDDZ models have been used since 1979 and the
RNDDZ models (Table 3) have been used since 1981 to predict DI
in the Pacific Northwest. Both the PNDDZ and RNDDZ models
correctly predicted DI for all cultivars in 1985 and 1986, but the
RNDDZ model overpredicted DI on Omar in 1986,

When the predictive models were compared on the basis of
percentage accuracy, models | and Il on all cultivars were 83—
89% accurate. In contrast, the PNDDZ and RNDDZ models were
only 67-819 accurate (Table 3). The values of adjusted R® were
consistently greater for models -1V of each cultivar than for
models PNDDZ and RNDDZ (Table 3).

DISCUSSION

The WINDOW program to identify the meteorological factors
that affect disease development was successfully used to identify
the meteorological factors that affect stripe rust severity.
Meteorological factors that we identified were included in
regression analysis, resulted in equations for cultivars Nugaines,
Gaines, and Omar (models I-1V, Table 3), and were more accurate
for predicting DI than PNDDZ and RNDDZ models (3,7) which
we had previously used.

Foreach cultivar, model 11 is proposed as a more accurate model
for the Pullman location and should replace the PNDDZ and
RNDDZ models currently used; these new models predict DI early
enough for chemical control. The method for analyzing
meteorological data will be used to develop new regional models to
replace the RNDDZ models now used in the Pacific Northwest.

The three-variable models (Il and 1V) for each cultivar had a
higher percentage accuracy than their comparable two-variable
models (I and I1I), except for model N-1 and N-11 which were both
89% accurate (Table 3).

The signs of all B-coefficients and the identity of the
meteorological factors (Tables 2 and 3) agree well with what is
known about the epidemiology of this disease. Fall temperature
was recognized as being important for development of stripe rust
the following year, and this knowledge was used along with
monitoring data and the PNDDZ and RNDDZ models to predict
rust. The effect of fall temperature was not quantifiable in the
earlier analysis of meteorological data (4). By using the WINDOW
program, mean minimum temperature for 3 October to 8
November was positively correlated with stripe rust development
on Nugaines. We speculate that the higher temperatures in the days
following planting of the crop in October resulted in earlier
emergence and faster growth of seedlings, which provided more
time and leaf area for infection and increase of stripe rust in the fall,
These results were obtained at Pullman. It is highly probable that
both temperature and precipitation may be important at locations
in the Pacific Northwest where the crop is planted in late August
and early September. Summer temperature in the Pacific
Northwest does not limit survival of Puccinia striiformis.
However, there are other regions of the world where summer
maximum temperatures are extremely high and may be important
in limiting disease oversummering. Whenever the range of input
data exceeds that included in model development, the stripe rust
models cannot be expected to make the correct predictions of DI,
although the predictions made may be useful to some degree.

Low winter temperatures often limit stripe rust development by



eliminating fall-infected foliage as well as healthy foliage and by
delaying sporulation (1). Our models show the importance of
winter temperatures to disease development in all cultivars.
Models I, I1, I1I, and IV for each cultivar are similar to the
PNDDZ and RNDDZ models in that, except for O-111, all have a
winter temperature factor. The winter factors were different for
each cultivar but were for shorter time periods (21-49 days) than
for the PNDDZ and RNDDZ models which used a NDDZ factor
for the same 62-day period for each cultivar. The winter
component of the models usually occurs in late December and
January, which is usually the coldest period of the year. However,
in the 1985 to 1986 growing season (identified as 1986 in Table 4),
the coldest period of the year occurred in November and
December. The result was that the predictions of DI for Omar were
higher than actual DI because the model does not take into account
when the coldest period occurs.

The DG25C was important in limiting disease in all cultivars.
However, the length of time important for Omar began later in the
season (4 June) and was shorter (22 days) than for Gaines and
Nugaines. For Gaines and Nugaines, DG25C began on 23 April
and 21 April and continued for 66 and 68 days, respectively. Both
Gaines and Nugaines have adult-plant resistance that requires high
temperatures to induce and maintain (14) and they start to show
high-temperature resistance early in the spring. We postulate that
from late April until early June, the effect of higher temperatures
(as measured by DG25C) was primarily important in triggering the
host resistance on Gaines and Nugaines. Omar is considered
susceptible with little or no high-temperature resistance. However,
Omar shows a very low level of resistance late in the season as
indicated by infection type and rust development. This may be one
reason for the importance of DG25C in June. Also, the number of
days with temperatures greater than 25 C are more frequent in
June. Shaner and Powelson (18) reported that constant or mean
temperatures above 22 to 25 C inhibited the stripe rust fungus. We
think that the higher temperatures from early to late June directly
limited the fungus and thereby were unfavorable to infection.

The models that included DG25C have a much higher adjusted
R? than those without this factor. However, the percentage
accuracy of these models (111 and [V) was only 0~6% greater than
those for the predictive models I and 11 (Table 3). Model 1V for
each cultivar is proposed as being the best full-season model. If
accurate long-term temperature forecasts for late April to late June
were available, models 111 and 1V also might be useful in making
predictions of DI early enough to allow application of control
when appropriate.

Attempts to include a precipitation factor in the PNDDZ and
RNDDZ models were not successful; only precipitation frequency
for the month of June was found to be significantly correlated (r=
0.59, P = 0.05). Using WINDOW, we found numerous spring
precipitation factors highly correlated with DI (Table 2). Models I,
I1, and IV for Gaines and Nugaines and model Il for Omar all
included a precipitation factor. These results support the report
that frequent precipitation in the spring was important to the
development of stripe rust epidemics in the Pacific Northwest (11),
but are in contrast to our earlier models which indicated that the
effect of precipitation on DI could not be quantified except under
drought conditions (5).

Our earlier results suggested that the degree of resistance of a
cultivar affects the percentage response that can be explained by
meteorological factors. In the present study, the application of
WINDOW shows that 87-899% of the variation in DI on these three
cultivars from year to year can be explained by three factors (Table
3). This is probably because the new analysis technique allows
examination of variable-length segments of meteorological data.
In the earlier work, the meteorological data were analyzed mainly
in blocks of months, cumulative months, or seasons. Because there
is no biological reason why either the pathogen or the host should
respond on a calendar basis, it is not surprising that the cultivars
appeared to have different degrees of response to climatic
conditions. The cultivars responded to different kinds of factors
but the total extent of response was approximately the same.
Ideally, models should be keyed to phenological time scales, such

as heading date, which was used for Septoria (9); however, such
data were not available for this study.

The program WINDOW has been successfully applied to
identifying meteorological factors important to the development
of two foliar diseases of wheat. This suggests a wide variety of
possibilities for its application. The technique should be applicable
to identifying the meteorological factors that are important to
development of other diseases on other hosts. Unfortunately, the
results of our studies (Coakley and McDaniel, wunpublished)
suggest that the best predictive models are obtained with a
minimum of 10 years of data, because this number gives a
reasonable range of values for the meteorological factors to be used
in model development.

The methods we described for analyzing meteorological data
and quantifying the relationship between climatic factors and
disease severity may have general application to studies of other
organisms and their interaction with their environment. For
example, WINDOW might be used to examine long-term climatic
records and to help explain why a specific disease changes over
time (2). Models developed could be used to evaluate other regions
for the probability of disease under current or changing climatic
conditions. WINDOW and associated methodology also can be
used to quantify populations or productivity of other types of
organisms in terms of climatic conditions. With minimal
modification, this technique could be used to analyze the effect of
meteorological conditions on specific aspects of disease
development over a growing season. In that case, hourly
meteorological data could be used in place of daily data, and much
more information on disease development could be included.

The program WINDOW is written in FORTRAN and runs on a
Cray computer. At present, WINDOW is not available for
distribution due to constraints of time and money.
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