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ABSTRACT

Reynolds, K. M., Madden, L. V., and Ellis, M. A. 1988. Spatio-temporal analysis of epidemic development of leather rot of strawberry. Phytopathology

78:246-252.

The temporal and spatial patterns of strawberry leather rot, caused by
Phytophthora cactorum, were monitored in three field plots near Wooster,
OH, from |5 May to 15 June 1986. Each plot was 2 m in length, three rows
wide, and partitioned into 60 quadrats (10 20-cm-long guadrats on each
side of a crop row). Straw mulch was removed from the two interior aisles,
but left on the two exterior sides. Plots were infested on 15 May with
strawberry fruit on which P. cactorum was sporulating. Assessments of
disease incidence in each quadrat were made by counting the number of
cymes bearing at least one infected fruit. By 8 June, disease incidence was
> 60% in all but two of the interior sides but < 109 in the exterior sides.
Data were analyzed using the spatio-temporal (ST) autocorrelation
analysis program, STAUTO, to identify the appropriate temporal and
spatial lag orders for specification of model parameters in ST
autoregressive moving average (STARMA) models. When spatial auto-
correlations and partial spatial autocorrelations of disease incidence
between quadrats were calculated for each plot over the 10 rain events,
first-, second-, and third-order spatial autocorrelations exhibited clear
positive trends in each plot, indicating that disease incidence within
neighboring quadrats at a given time was becoming progressively similar as
the epidemic developed. No such trends were apparent in the partial
autocorrelations. The first-order spatial partial autocorrelation was

significant in all three plots for the last six rain events, whereas higher-order
partial autocorrelations never attained significance in any plot, indicating a
lack of spatial dependence between disease incidence in quadrats beyond
the first spatial lag at any given time. Analyses of separate across- and
within row-side ST autocorrelations of disease incidence demonstrated
that a strong barrier effect was operating across crop rows. The highest
levels of ST autocorrelation for all three plots were observed using the
rook’s definition of spatial proximity and a crop row barrier specification
that was obtained by trial and error. Initial model identification was based
onthe use of temporally differenced data, since analysis of the raw data and
STautocorrelograms indicated that the data were nonstationary over time.
Interpretation of ST autocorrelograms and partial ST autocorrelograms
suggested that the ST transfer functions that generated the observed
patterns of fruit infection in plots 3 and 6 were very similar, and that change
in the logit of disease incidence within a quadrat could be predicted in terms
of the mean change and a single disturbance (error) term. However, the ST
transfer function in plot 2 was best represented by eithera STIMA(I, 1) ora
STARIMAC(L, 1, 1, 1) model. Differences in model forms required to
represent the epidemic processes in the three plots appeared to be the result
of differences in topographic and edaphic factors that affected splash
dispersal of the pathogen.

Quantitative analysis of epidemics began in earnest with the now
classic temporal models of Vanderplank (21), whose methods
treated epidemic development as a homogeneous spatial process.
However, plant pathologists recently have also demonstrated
considerable interest in describing the spatial patterns of disease
(3,10,14). Descriptive statistics such as the variance-to-mean ratio
(5), Lloyd’s indices of mean crowding and patchiness (9,20), and
the negative binomial k parameter (15) have proven useful in
characterizing the spatial association of diseased plants. Interpreta-
tions of the epidemic process based on these point pattern statistics
can be employed to infer certain basic characteristics of an
epidemic such as mean patch size (20) or true versus apparent
contagion (4).

A basic characteristic of all point pattern statistics is that they
only describe a spatial pattern at a single point in time. Thus, these
analyses provide only very general insights into the evolutionary
process that led to the state of the system at the time of disease
assessment. Spatial autocorrelation measures are similarly limited.
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Madden et al (11) have shown that the utility of spatial auto-
correlation methods can be extended by examining how these
statistics change over time. However, the approach of Madden et al
(11) is still not sufficient for the identification and specification of
models that describe how such patterns evolve through time.
Spatio-temporal (ST) autocorrelation analysis is a relatively
new analytical method that can be applied to the analysis of
epidemics when data are collected from repeated observations over
time and from a lattice (regular rectangular grid) of contiguous
quadrats. In contrast to analytical methods cited above, ST
autocorrelation analysis can be used for identification of the
spatio-temporal transfer function (STF) that describes the
development of an epidemic in time and space (1,2,4,12,16,18). An
STF is an empirical function that describes the temporal and
spatial relationship between the values associated with the
elements that compose the lattice (e.g., disease observations), and
the function is typically composed of autoregressive and moving
average terms that may be lagged both in time and space. The
principal feature distinguishing this method from others is that
temporal and spatial characteristics of a process are analyzed




simultaneously (2). Reynolds and Madden (18) have summarized
the central theoretical developments of ST autocorrelation

analysis, and an exhaustive treatment of the theory can be found in

Bennett (2).

In this study, the methods of ST autocorrelation analysis were
used to identify the STF of the epidemic process operating in the
case of leather rot of strawberry (Fragaria X ananassa Duch.
‘Midway’), caused by Phytophthora cactorum (Leb. & Cohn)
Schroet., which has been shown to be splash dispersed (6,17,19).
The goal of our analytical procedure was to identify the
appropriate model order, within the general model class known as
spatio-temporalautoregressive movingaverage (STARMA)
models, needed to describe the splash dispersal of P. cactorum in
time and space.

MATERIALS AND METHODS

Plot establishment. Six plots were established in a commercial
strawberry field near Wooster, OH, in early May 1986 before
flowering. Each plot was 2 m long and three crop rows wide. The
straw mulch was removed from the center aisles of plots 2, 3, and 6.
Because of lack of disease development in the other three plots,
onlydata from plots 2, 3, and 6 were used in the present study. Five
flower cymes closest to the row aisle were tagged in each of 10
20-cm-long sections on each side of a crop row, providing a lattice
of 6 by 10 quadrats in each plot. For the purposes of subsequent
discussion, the six crop-row-sides of a plot will hereafter be
referred to as sides 1-6, with sides 1 and 6 being the two external
sides of a plot. Note that sides 2 and 3 as well as sides 4 and 5 are
pairs (pairs 2-3 and 4-5, respectively) in which the members of each
pair face one another across a crop row aisle. Similarly, in the pairs
of sides, 1-2, 3-4, and 5-6, the members of each pair are adjacent,
but on opposite sides of the same crop row.

Plot infestation and disease assessment. Infected strawberry
fruit were prepared by the method of Grove etal (7), and each plot
was infested with fruit on which P. cactorum was actively
sporulating. Five infected fruit were placed at the southern edge of
each plot between pairs 2-3 and 4-5 on 15 May (inoculum was
placed at the ends of plots rather than the middle to provide
maximum distance for disease movement). Disease assessments
were performed 5 days (maximum length of latent period under
ambient weather conditions) after each of 10 rain events during the
period 15 May to 10 June (Fig. 1). At each assessment, disease
incidence (DI) was assessed as the number of tagged cymes in a
quadrat that bore one or more infected fruit.

Statistical analysis. It is important to understand that, although
most of our graphical results are presented in terms of chrono-
logical time, for purposes of analysis, the units of “time” are rain
events (e.g., time is measured in events, not hours or days). Events
were used as the unit of time rather than chronological time, since
spread of P. cactorum between fruit is known to occur only by rain
splash. Thus, for practical purposes, chronological time is not
particularly relevant.

Lloyd’s index of patchiness of DI was computed for each plot at
cach sample date (9). Spatial autocorrelations and partial spatial
autocorrelations were also calculated for each sample date using
logit(DI), binary distance weighting, and the rook’s definition of
spatial proximity (18).

A preliminary ST analysis was performed using quadrat
observations transformed to logit(DI), and in which ST
autocorrelograms for three spatial (s) and three temporal (k) lags
were generated for separate across- and within-side neighbor
effects for each plot, using binary distance weighting (4,18,20). The
latter analysis was performed to assess whether or not differences
existed between autocorrelations within sides and autocorrelations
across sides. The strengths of crop row barrier effects were
subsequently determined by trial and error as that set of barrier
specifications yielding the largest improvement in across-side
autocorrelations (18).

Autocorrelograms for nondifferenced, logit-transformed data
were generated using the barrier specification set obtained above,
and using three alternative spatial proximity patterns (rook,

queen, and square) and two alternative distance weighting criteria
(binary and inverse distance). Autocorrelograms produced by the
alternative proximity patterns and weighting criteria were
compared to determine which combination produced the highest
general level of ST autocorrelation and to check for evidence of
spatial and/or temporal nonstationarity in each data set (2,18).
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Fig. 1. Progress of leather rot development in field plots from 15 May (day
of the year [Julian date]= 135) to 9 June (day of the year= 159) 1986. Straw
mulch was removed from the interior aisles, but left on the external sides of
cach plot. Disease incidence in the figure is summarized as percent of
strawberry cymes bearing at least one infected fruit on each side of each of
three rows per plot (plot length was 2 m). The six sides of rows are
designated by plot position (panel A): side | was the west side of the west
row (WW), and side 6 was the east side of the east row (EE). Arrows (panel
C) indicate approximate time of rain events, and numbers over arrows
indicate rainfall amount in millimeters. Disease assessments were
performed 5 days after each rain event. A, Plot 2. B, Plot 3. C, Plot 6.
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Initial model identification was based on z statistics of the
autocorrelations and partial autocorrelations and the general
patterns observed in the autocorrelograms and partial autocorrelo-
grams (1,2,11,15,18).

Parameter estimation for the general class of STARMA model
is accomplished by conditional maximum likelihood estimation
(CMLE, 16). The method is quite complex, and not generally
available, although we are working on an adaption of the
algorithm of Pfeifer and Deutsch (16). Because of the current lack
of suitable CMLE procedure, initial model specification was only
possible for the simplest cases analyzed in this study. A companion
program to STAUTO also was developed for use in verification of
STARMA models (STVER). STVER uses a model specified by
the analyst, together with a set of initial lattice values, to compute
predicted values for the spatio-temporal data series. The program
outputs residuals for subsequent analysis via STAUTO. Like
STAUTO, STVER allows for the specification of proximity
patterns, distance weighting, and barrier effects. In the present
study, STVER was used to obtain the residuals, and these were
then analyzed in STAUTO to check for patterns in the residuals
that would indicate an underspecified model (e.g., a model from
which significant moving average or autoregressive terms had been
omitted).

RESULTS

Disease progress within sides 2-5 in each plot generally
exhibited a pattern typical of logistic increase, whereas disease
development within sides 1 and 6 was very limited (Fig. 1). Trends
in Lloyd’s index of patchiness over the 10 assessment dates were
very similar in plots 2 and 3 (Fig. 2). In both plots, DI patterns
determined at each of the first five assessments (day of year
140—149) were generally uniform to slightly underdispersed (< 1).
Between assessments 6 and 10 (day of year 151-159), the index of
patchiness in plots 2 and 3 exhibited a slight but fairly consistent
positive trend, with final values for patchiness being 1.10and 1.15
for plots 2 and 3, respectively (Fig. 2). The latter trend in plots 2
and 3 indicates a slight tendency toward aggregation late in the
epidemic (e.g., after day of year 155).

The trend in Lloyd’s index for plot 6 was markedly different
from that observed for plots 2 and 3. In plot 6, index values were
quite large for days 140144, indicating an initially high degree of
disease aggregation (Fig. 2). However, the index for plot 6 declined
steadily over the sequence of rain events so that, by the last
assessment date, Lloyd’s index for plot 6 was nearly identical to
that for plots 2 and 3.

Consistent positive trends over time in first-, second-, and third-
order spatial autocorrelations were observed in each plot,
indicating that logit(DI) within neighboring quadrats was
becoming progressively similar over time (Fig. 3A). Although
there were no significant autocorrelations before the seventh
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Fig. 2. Patterns of leather rot aggregation assessed over 10 rain events using
Lloyd’s index of patchiness (9,20).
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assessment (day of year 153), first-order autocorrelations for plot 6
were much greater than those for plots 2 and 3. First-order spatial
autocorrelations were significant in all three plots for the last four
assessment dates (days 153-159, Fig. 3A). Similarly, first-order
partial spatial autocorrelations were significant in each plot for the
last six assessment dates (days 149-159) and also tended to increase
over time (Fig. 3B). However, temporal trends in higher-order
spatial partial autocorrelations were much less apparent or entirely
lacking, and generally not significant (Fig. 3B). The absence of
significant higher-order partial spatial autocorrelations indicates
that spatial autocorrelations for s > 1 were a consequence of
collinearity in the lattice observations, so that significant
dependence between values of logit(DI) among lattice elements did
not extend beyond one spatial lag in any rain event.

ST autocorrelations were significantly greater for within- than
for across-side neighbors, when these statistics were calculated
separately (Table 1). Thus, logit(DI) within the side of a row
appeared to be much more strongly affected by the prior level of
logit(DI) within quadrats belonging to the same side of a row than
by the prior level of logit(DI) within quadrats belonging to
different row-sides, indicating that crop rows were acting as
barriers to splash dispersal of P. cactorum. The barrier
specification set yielding the greatest increase in across-side
autocorrelations was [0.1, 1.0, 0.5, 1.0, 0.1] for row-sides 1-2, 2-3,
and so on (Table 2).
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Fig. 3. Z-statistics for first- and second-order spatial autocorrelations and
partial autocorrelations of disease incidence among lattice elements for
leather rot development in field plots. All estimates were calculated for
nondifferenced, logit-transformed values of disease incidence, using the
rook’s definition of spatial proximity and binary distance weights. Arrows
(panel B) indicate approximate time of rain events, and numbers over
arrows indicate rainfall amount in millimeters. A, Spatial autocorrelations.
B, Partial spatial autocorrelations.



TABLE I. Within- and across-row spatio-temporal autocorrelations between leather rot incidence on strawberry cymes and spatially and temporally lagged

incidence values®

Plot 2
Across-row autocorrelations” Within-row autocorrelations”
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 0 1 2 3
1 0.88%%* 0.36%** 0,25%* 0.02 0.88*** 0.79*%» 0.73%*= 0.73%%%
2 0. 6R*** 0.21* 0.17 -0.02 0.68%** 0.62%** ().55%%% 0.57%**
3 0.40%** 0.00 0.03 =0.06 0.40%** 0.37%** 0.29%= 0.33%%*
Plot 3
Across-row autocorrelations Within-row autocorrelations
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 0 | 2 3
1 0.88**#* 0.18% 0.24** 0.10 0.88*#* 0.64%%* 0.74%** (.65%**
2 0.73%%+ 0.13 0.15 0.02 0.73%%* 0.50%** 0.62%** 0.53%**
3 0.55%%* 0.08 0.07 —0.04 0.55%%* 0.35%*+ 0.49%** 0.4 ***
Plot 6
Across-row autocorrelations Within-row autocorrelations
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 0 1 2 3
1 0.92%*+ —0.08 0.00 —0.08 0.92%** 0.62%%% 0.59%** 0.56%+*
2 0.83%** —0.12 —0.03 —0.10 0.83%%* 0.56%%* 0.5]1%** 0.52%%*
3 0.74%%* =0.13 —0.05 =0.10 0.74%%% 0.5]%%* 0.44%%= 0.48%»*

“The logit transformation was applied to each lattice cell observation prior to analysis, based ona maximum of five possible cyme infections. Binary distance

weighting also was used.

"%, ** and *** following table values indicate that autocorrelations were significant at P=0.05, P=0.01, and P = 0.001, respectively.

TABLE 2. Across-row spatio-temporal autocorrelations between leather
rot incidence on strawberry cymes and spatially and temporally lagged
incidence values, using the barrier effect specification®

Plot 2
Across-row autocorrelations’
Temporal Spatial lag order
lag order 0 1 2 3
1 0.88%** 0.46%** 0.34%%* 0.27%=
2 0.68%** 0.31*# 0,254« 0.22*
3 0.40%** 0.07 0.14 0.17
Plot 3
Across-row autocorrelations
Temporal Spatial lag order
lag order 0 1 2 3
1 0.8R*** 0.24** 0.24%=* 0.24
2 0.73r== 0.16 0.19* 0.19*
3 0.55%%% 0.09 0.15 0.16
Plot 6
Across-row autocorrelations
Temporal Spatial lag order
lag order 0 1 2 3
1 0.92%%x* 0.10 0.12 0.15
2 0.83%+* 0.04 0.09 0.13
3 0.74%% —0.01 0.07 0.11

"The logit transformation was applied to each lattice cell observation
before analysis, based on a maximum of five possible cyme infections.
Binary distance weighting also was used. The barrier set was (0.1, 1.0, 0.5,
1.0, 0.1).

"% *%_ and *** following table values indicate that autocorrelations were
significant at P=0.05, P=0.01, and P = 0.001, respectively,

Among the combinations of spatial proximity pattern and
distance weighting, ST autocorrelations were generally higher for
each plot when the rook’s definition of spatial proximity was used
in conjunction with binary distance weighting and the above set of
crop row barrier specifications. Example ST autocorrelograms
representing each proximity pattern-distance weighting

combination are presented for plot 2, whose results are typical of
all three plots (Table 3). For the three proximity patterns tested,
use of inverse distance weighting consistently resulted in a general
reduction in ST autocorrelations in the three plots (Table 3). All
combinations of pattern and distance weighting showed strong
indications of temporal and spatial nonstationarity as evidenced
by the failure of autocorrelations to decay rapidly in time and
space, respectively (Table 3). Because the number of spatial and
temporal lags was limited, the evidence for nonstationarity seen in
the correlograms was not conclusive. However, the disease
progress curves for individual sides within each plot showed strong
evidence of temporal nonstationarity (Fig. 1). Moreover,
examination of logit(DI) values within and across sides over time
provided no evidence of spatial nonstationarity. Consequently,
temporal differencing of logit(DI) was employed in the final ST
autocorrelation analysis in addition to the use of binary distance
weighting and barrier effects. The autocorrelograms and partial
autocorrelograms were dramatically altered as a result of
differencing (Table 4). Results for plots 3 and 6 were quite similar.
The lack of any significant autocorrelations or partial
autocorrelations for plots 3 and 6 indicated that the STF in both
cases might be represented by an extremely simple model whose
general form is given by:

VT,}’i.r:#+§r'.f (1)
in which V7 is the temporal difference operator, which is given by:
V?ZV:‘.: = Via = Via—1i (2)

and in which p is a constant, &, is normally distributed with mean 0
and variance o, and L' is the spatial lag operator (18). The
maximum likelihood estimate (MLE) of y is just the grand spatio-
temporal mean of the temporal differences of logit(DI), while the
MLE of ¢’ is given by the variance of the Vs, Substituting and
the MLEs of u for plots 3 and 6 into equation | gives, respectively:

Vie = Vi1 + 024+ &, &, ~ NID(0,0.27) 3)
and
Yie= V-1 + 017+ &, &, ~ NID(0,0.25) (4)
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Due to the similarity of the models for plots 3and 6 (Egs. 3 and 4, considered significant for any temporal lag at a spatial lag greater

respectively), the p parameters and the variances of &, were than 0, ST autocorrelations at s = 0 were highly significant for at
averaged to obtain a common model for the two plots: least the first three temporal lags (Table 5). Only the partial
R . autocorrelation fors= 0 and k= | was considered significant. The

Vo, =021+ &, &~ NID(0,0.26) (5) patterns observed in both the autocorrelations and partial
autocorrelations were suggestive of a pure autoregressive process

Results of the model verification procedure using STVER in the residuals of equation 5 (Table 5). This, in turn, would
indicated that the model specification (Eq. 5) was incomplete. indicate the need for at least one moving average term with s =0
Although there were no ST autocorrelations that could be and k= | in the original difference equations for plots 3 and 6, since

TABLE 3. Spatio-temporal autocorrelations between leather rot incidence on strawberry cymes and spatially and temporally lagged incidence values for
plot 2, using different combinations of spatial proximity pattern and distance weighting criteria’

Rook pattern

Autocorrelations with binary weighting” Autocorrelations with inverse distance weighting”
Temporal Spatial lag order Spatial lag order
lag order 0 | 2 3 0 1 2 3
1 0.8g*** 0.8 *** 0.74%** 0.75%** 0.88%** 0.8 %** 0.56%** 0.45%**
2 0.68%** R ol 0.66%** 0.68%** 0.68%** LA el 0.5]%%* 0.40%**
3 0.40%** 0.47%+ 0.49%%* 0.54%** 0.40%** 0.47%** 0.43%* 0.35%**
Queen pattern
Autocorrelations with binary weighting Autocorrelations with inverse distance weighting
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 3 0 1 2 3
1 0.88*** 0.75%** 0.65%** 0.65%** 0.88%** 0.75%%¢ 0.46%** 0.37%**
2 0.68%** 0.66%** 0.59%%* 0.59% 4+ 0.68*** 0.66%** 0.40%** 0,339
) 0.40%** 0.47%%* 0.49%** 0.50%** 0.40%** 0.47%** 0.33%* 0.29**
Square pattern
Autocorrelations with binary weighting Autocorrelations with inverse distance weighting
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 3 0 l 2 3
1 (. 88*** D Fowen (. 55%mk 0.48%** 0.88*** 0.75%** 0.40%** 0.3]%**
2 0.68%*** 0.66%** 0.45%%* 0.38%*x 0.68%** 0.66%** 0.33% %% 0.28%*
3 0.40%*=* 0.47%%* 0.28%* 0.25%* 0.40%** 0.47%%+ 0.26%* 0.24*

“The logit transformation was applied to each lattice cell observation before analysis, based ona maximum of five possible cyme infections per quadrat. The
barrier specification set (0.1, 1.0, 0.5, 1.0, 0.1) was used in each case.
P# #* and *** [ollowing table values indicate that ST autocorrelations were significant at P=0.05, P=0.01, and P = 0.001, respectively.

TABLE 4. Spatio-temporal autocorrelations between leather rot incidence on strawberry cymes and spatially and temporally lagged incidence values, using
the rook’s definition of spatial proximity”

Plot 2
Autocorrelations” Partial autocorrelations”
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 3 0 1 2 3
1 0.05 0.28%* 0.16 0.20* —0.07 0.22%%* 0.07 0.09
2 0.03 0.09 0.05 0.03 —0.05 0.05 -0.03 —0.05
3 =0.05 —0.01 —0.03 -0.02 —0.08 0.01 —0.04 —0.01
Plot 3
Autocorrelations Partial autocorrelations
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 3 0 1 2 3
1 —0.01 0.07 0.14 0.13 —0.06 0.03 0.10 0.08
2 0.02 —0.03 —0.02 -0.03 0.01 —=0.05 0.00 —0.02
3 —0.05 —0.08 0.06 0.01 -0.03 —0.11* 0.10 0.01
Plot 6
Autocorrelations Partial autocorrelations
Temporal Spatial lag order Spatial lag order
lag order 0 | 2 3 0 | 2 3
1 -0.07 0.04 0.06 0.02 =0.11 0.04 0.08 -0.01
2 —-0.06 —0.02 —0.05 =0.01 =0.07 0.02 —0.03 0.00
3 —0.06 =0.01 —0.04 —0.03 —0.07 0.04 =0.02 —0.03

"The logit transformation was applied to cach lattice cell observation before analysis, based on a maximum of five possible cyme infections per quadrat.
Binary distance weights and temporal differencing were also used. The barrier specification set (0.1, 1.0, 0.5, 1.0, 0.1) was used in cach case.
"+ ** and *** following table values indicate that ST autocorrelations were significant at P=0.05, P=0.01, and P = 0.001, respectively.
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TABLE 5. Spatio-temporal autocorrelations for residuals of leather rot incidence on strawberry cymes using the rook’s definition of spatial proximity"

Plot 3
Autocorrelations” Partial autocorrelations”
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 3 0 1 2 3
1 0.8]*** 0.10 0.19 -0.05 0.6]1%** —-0.03 0.05 0.07
2 0.65*** 0.05 0.17 -0.09 0.04 —-0.06 =0.07 =0.01
3 (.53%* 0.10 0.21 —0.09 —0.01 0.07 0.13* -0.09
Plot 6
Autocorrelations” Partial autocorrelations’
Temporal Spatial lag order Spatial lag order
lag order 0 1 2 3 0 1 2 3
1 0.86%*+ 0.22 —0.06 —0.08 0.63%** 0.01 0.01 -0.02
2 0.73%%% 0.16 —0.12 —=0.11 =0.00 =0.05 -0.04 =0.01
3 0.64*** 0.16 =0.16 =0.10 0.04 0.07 =0.02 0.03

“The logit transformation was applied to each lattice cell observation before analysis, based on a maximum of five possible cyme infections per quadrat.
Binary distance weights and temporal differencing were also used. The barrier specification set (0.1, 1.0, 0.5, 1.0, 0, 1) was used in each case.
Pa wx and #EE following table values indicate that ST autocorrelations were significant at P=0.05, P= 0.0, and P=0.001, respectively.

an autoregressive process in the residuals is equivalent to a moving
average process.

The analytical results for plot 2 differ from those described for
plots 3 and 6 (Table 4). In particular, the ST autocorrelation and
partial autocorrelation for s = I at k = | were both clearly
significant. Therefore, a likely model form in this case would be
either a STIMA(1,1) or STARIMA(L,1,1,1) model (2,11,15,17).
Parameter estimation for either model form requires the use of
conditional MLE techniques, which are not readily available, but
which we plan to develop and present in the near future.

DISCUSSION

The analysis of leather rot development in time and space began
with an examination of trends in Lloyd’s index of patchiness (Fig.
2) and in spatial autocorrelation coefficients (Fig. 3). Although no
significant spatial autocorrelations were observed in any plot
before the fifth assessment, it is interesting to note that much
higher levels of spatial autocorrelation were obtained for plot 6,
and that these initially high autocorrelations corresponded to very
high values for Lloyd’s index. A correspondence also existed
between the trends in Lloyd’s index (Fig. 2) and the trends in
spatial autocorrelation (Fig. 3). The trends in spatial auto-
correlation for plots 2and 3 were very similar, whereas that for plot
6 was initially quite different. However, the spatial autocorrelations
for plot 6 eventually approximated those of plots 2 and 3 (Fig. 3).
The same general pattern is also quite apparent for trends in
Lloyd’s index (Fig. 2).

The analysis of separate within- and across-side ST auto-
correlations indicated the presence of a strong barrier effect that
operated across crop rows, as evidenced by the much lower ST
autocorrelations observed across than within sides (Tables 1 and
2). Because the canopy of a strawberry row is relatively dense, it
seemed likely that splash dispersal of P. cactorum would be
influenced by some form of barrier effect. The barrier specification
that was finally selected was arrived at by trial and error, using
improvement in the general level of ST autocorrelation as a
criterion. In the initial stages of this analysis, we had hoped to be
able to deduce an appropriate barrier specification from the data
by examining autocorrelations between change in DI in pairs of
rows. Unfortunately, the specification of barrier effects derived
from such autocorrelations was found to be less than optimal with
respect to maximizing across-side ST autocorrelations. It appears
that this approach failed as a consequence of aggregating the DI
data by the sides of crop rows. Thus, at least for the present, trial
and error estimation of barrier effects appears to be the only
recourse.

When the ST analysis was performed in both spatial dimensions
simultancously, the highest general levels of ST autocorrelation

were observed for the rook proximity pattern. The spatial lag
operator (18) for a given lattice element in the rook’s case only
sums neighbor values that come from lattice elements belonging to
the same lattice row or column as lattice element i, whereas the
queen and square patterns include additional lattice elements in the
spatial lag operator summation (Fig. | in 18). Because inclusion of
the additional elements almost always resulted in lower ST auto-
correlations, these elements may not have represented effective
sources of inoculum with respect to disease increase in lattice
element i. A possible explanation of the latter observation might be
that inoculum dispersal across row barriers is affected by the
dispersal path length across a barrier. For instance, when the
direction of dispersal is normal to barrier orientation, the path
length across the barrier is minimal. As the direction of dispersal
becomes more oblique relative to barrier orientation, path length
across the barrier increases. Inoculum from element j must travel a
greater distance through the plant canopy to reach element i and
therefore meets with a larger number of obstacles in the form of
plant foliage. Therefore, the strength of a barrier effect across
adjacent rows may not be constant, but varies as a function of
dispersal path length across a barrier. For the purposes of the
present study, we have assumed that barrier effects are, in fact,
independent of path length. However, the path length hypothesis
deserves further consideration as more data sets become available.

The form of equations 3 and 4 imply that disease in lattice
element i increases independently of disease incidence in
neighboring lattice elements. Because splash dispersal gradients
are generally very steep (12), and that for P. cactorum in particular
is known to be quite steep (16), the form of equations 3 and 4 might
appear to be a very unlikely result. However, both plots 3 and 6
were prone to flooding, as evidenced by the frequent occurrence of
standing water after showers of only moderate intensity (< 5 mm
hr'). The accumulation of surface water in these plots may have
aided dispersal to such an extent that the relative positions of
infested and uninfested lattice elements had little bearing on the
ability of one element to supply inoculum to another. In addition,
the frequent occurrence of standing water may have given rise to a
soil reservoir of inoculum that was well dispersed within these
plots, so that each plot effectively had its own supply of inoculum,

The initial specification for plots 3 and 6 only included the term
u (Eqgs. 3 and 4, respectively). This model would be designated as
STIMA(0, 0), which is the form of a random walk model.
However, the verification analysis indicated that equations 3 and 4
were underspecified, and that a moving average process at a spatial
lag of s = 0 should be included in these models (Table 5). Moving
average terms in the general STARMA or STARIMA models are
often referred to as error or disturbance terms, and their inclusion
in a model is indicative of a significant effect on system behavior
due to ignored or unknown external variables (2). It should be
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noted that significant moving average effects are indicative of
external events that are local in scope. Further model development
for leather rot increase in plots 3 and 6 should probably also
consider factors such as rainfall amount and other weather
variables that influence sporulation of P. cactorum and infection
of strawberry fruit by the pathogen.

The low level of ST autocorrelations observed for plot 2 after
temporal differencing (Table 4) suggests that the STF in this case is
not substantially different from that for plots 3 and 6, particularly
in view of our earlier position that low values of ST autocorrelation
should be evaluated more conservatively when binary weights are
used as the distance weighting criterion (18). The factors noted
above in connection with the generalized dispersal processes active
in plots 3 and 6 were probably also effective to some extent in plot
2. However, the occurrence of non-zero-order autoregressive terms
in the model for plot 2 may reflect a real difference between the
physical environment of plot 2and that of plots 3 and 6. Plot 2 was
located on a higher and more steeply sloping portion of the field,
and consequently was not as prone to flooding. Thus, for plot 2,
splash dispersal of P. cactorum between lattice elements may have
been more dependent on direct dispersal of inoculum from one
element to another. Because both the ST autocorrelations and
partial autocorrelationsats= | and k = | were quite low (Table 4),
the generalized dispersal process also appeared to dominate in
plot 2.

The analyses of infection incidence pattern development for
leather rot began with an analysis of the spatial autocorrelation of
disease associated with a sequence of rain events (Fig. 3). If an
interpretation of the process underlying pattern development were
to be based on the spatial autocorrelations of the latter analysis,
one would be led to conclude that the spatial dependence between
logit(DI) in lattice elements was extending over time to higher
order spatial lags. The partial spatial autocorrelations from the
same analysis clearly indicate that spatial dependence never
extended beyond a single spatial lag. However, even a considera-
tion of the partial spatial autocorrelations is misleading, since the
latter attain very high values, suggesting a strong spatial
dependence by the end of the epidemic (Fig. 3). With respect to the
processes that generate an observed pattern of disease, the latter
analysis is inappropriate and fails, because the temporal dimension
isignored. Itis important to note that similarly incorrect inferences
will be made when using an ST autocorrelation analysis if the data
exhibit nonstationarity, and the nonstationarity is not accounted
for by differencing.

Spatio-temporal autocorrelation analysis represents a funda-
mentally new analytical approach to plant disease epidemiology.
Unlike, previous analytical methods, this method allows
simultaneous testing of spatial and temporal effects of prior disease
history on current epidemic development. The results of our
analysis of leather rot epidemiology indicate that the STF may be
represented by an extremely simple model structure. Indeed,
transformations that effectively linearize the disease progress curve
may frequently lead to identification of models similar in structure
toarandom walk process. The underlying structure of equations 3
and 4 is logistic. It is important to note that departures from the
random walk model do not require that we abandon the logistic
model as a basis for description of epidemic development. Instead,
the basic structure may only require modification by inclusion of
additional autoregressive and/ or moving average terms. While the
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logistic model should not be treated as beyond criticism, its
applicability to STARMA models that can describe a diversity of
epidemics may help to maintain a common theoretical thread
through epidemiology. Consequently, it may be possible to reduce
the epidemic process to a few simple and fundamental types. Such
a result would be in the best spirit of comparative epidemiology (8).
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