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ABSTRACT

Reynolds, K. M., and Madden, L. V. 1988. Analysis of epidemics using spatio-temporal autocorrelation. Phytopathology 78:240-246.

The theory of spatio-temporal (ST) autocorrelation analysis is
summarized. Methods of epidemic analysis that are specific to agricultural
systems in which temporal observations are made on disease values in a
regular spatial lattice are presented. Techniques for calculating ST
autocorrelations and partial autocorrelations are given; these statistics are

then used in identifying the order of autoregressive and moving average
terms that should be included in an ST transfer function that describes
epidemic development in time and space. Spread of leather rot of
strawberries is used as an example.

Recent reviews of the analysis of spatial pattern of plant disease
reflect a growing sophistication in the approaches employed by
epidemiologists for understanding disease development as a spatial
process (5,12,18). The latter reviews provide a thorough treatment
of the analysis of spatial point patterns, and it is not our intent here
to recapitulate those observations, other than to note, by way of
introduction, that such analyses provide only limited, and often
ambiguous, insights into the processes that have generated an
observed spatial pattern. At least in part, this is because point
pattern analyses generally do not conserve any information on
location. This is not true of distance methods, but these have not
found much practical use in plant pathology (19). The Moran 1
statistic (17) and other measures of spatial autocorrelation
conserve the spatial information content of a field sampling
scheme by making use of information on the location of each
sample point (6,18). Nicot et al (18) have discussed the advantages
of using the Moran I statistic to characterize the spatial pattern of
disease. Noe and Campbell (19) used spatial autocorrelation to
characterize the spatial pattern of several nematode species.
Madden et al (13) have demonstrated how the use of spatial
autocorrelation coefficients (16) calculated for a series of sample
times can be used in conjunction with spatial point pattern
statistics such as Lloyd’s mean crowding and patchiness indices
(22) to characterize changes in spatial aggregation over time.

Ultimately, the goal of spatial analysis in epidemiology should
be not to simply analyze and describe spatial patterns of disease,
but to identify and specify the physical and biological mechanisms
that account for the evolution of spatial patterns of disease over
time. The analytical methods described here could be viewed as
intermediate between the purely descriptive and purely
mechanistic approaches in that spatio-temporal (ST) auto-
correlation analysis is intended to identify models that can account
for the evolution of observed spatial patterns as opposed to simply
describing a pattern at a fixed point in time. The general class of
models that are used to describe pattern evolution in time and
space are known as spatio-temporal transfer functions (STFs). In
general, an STF may be composed of temporally and spatially
distributed inputs, system variables, and errors (definitions of
these variables are presented subsequently). The goal of the
statistical procedures of process identification is to determine the
limits of significant temporal and spatial dependence between
events in a plane, while the goal of process specification is the
actual estimation of parameters of the STF (3). The present paper
is limited to a discussion of the theory and techniques of
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identification. It is important to note that spatial autocorrelation
analysis is not sufficient for process identification, since this
technique is limited to the description of an observed pattern at a
single point in time. For instance, one could look at how spatial
autocorrelation changes over time (13), but nothing in the latter
approach would suggest the manner in which one pattern might
arise from another (3).

STF identification involves an analytical technique known as
spatio-temporal autocorrelation (2,3,14). ST autocorrelation can
best be thought of as an extension of spatial autocorrelation
analysis (6) that incorporates elements of classical time series
analysis (4). Although the analytical theory is well developed,
programs needed to perform such analyses are highly complex and
not generally available, so we have developed a PASCAL language
program (STAUTO) for this purpose. We first describe some of the
necessary theoretical background, and then present an example
analysis.

PHYSICAL BASIS FOR ANALYSIS

Representation of sample areas. A field can be viewed as a
regular lattice on the Cartesian plane, each of whose N elements
represents a sampling area. Commonly, these sampling areas are
contiguous quadrats, For notational convenience, the N elements
are designated with a single subscript, i (i= 1... N), rather than with
the double Cartesian coordinate subscript. Suppose that we have T’
observations on the lattice over time. Then the quantity of interest
(say, number of diseased individuals) at time ¢ in element i will be
designated y,, .

Spatial and temporal proximity and the concept of
neighborhood. Ultimately, we will define an ST autocorrelation
statistic, but first it is necessary to explain the meanings of spatial
and temporal proximity, and the sense in which a set of lattice
elements j may be said to be neighbors of an element i. First,
consider the purely spatial case of proximity, which is defined in
terms of a spatial pattern selected by the investigator and a spatial
lag order. Cliff and Ord (6) give a number of examples of spatial
proximity patterns, the most common of which are analogues from
the game of chess and are designated “rook,” “bishop,” and
“queen” (Fig. 1). Many other patterns are possible, and additional
types that are included in STAUTO are also illustrated (Fig. 1).
First- and second-order spatial lags are illustrated for each of the
above patterns (Fig. 1). Extension of the definition of spatial
proximity for each pattern to higher-order spatial lags is
straightforward.

In strict analogy with the conventional correlation statistic, we
are interested in the degree to which the value of some variable



(say. disease incidence) in element i covaries with values observed
inelements at varying distances from i. To demonstrate, letj be the
set of elements that satisfies the spatial requirements of the
particular proximity pattern being considered fora givenelement i
(Fig. 1). Then, fora given spatial lag s, we can define the spatial lag
operator L'y, :

L"y,-,, = _‘3} {yh,r)f( ?’lj “ )

in which j denotes the set of elements that lie at lag distance s from
element i, n} denotes the number of elements in j at lag s, and the
notation 4 € j indicates that the summation is over all elements A
that belong to the set j. For example, in the case of the rook’s
definition and given s = |, the lattice elements included in the
summation (Eq. 1) would be those immediately adjacent to
element i in the same row or column (Fig. 1). These same elements
are also said to be first-order spatial lag neighbors of i. Thus,
neighborhoods of element i are defined with respect to a specific
spatial order of lag distance, and we will refer to lattice elements
satisfying the distance and pattern criteria as s-order spatial
neighbors of element .

Clearly, there must be some rational basis for selection of a
particular pattern. Ideally, the choice of pattern should be based on
the investigator’s prior knowledge of how spatial orientation of
lattice elements influences the ability of element pairs to interact. If
there was no physical basis for assuming the presence of a
directional bias, then a symmetrical pattern would be a logical
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Fig. 1. Examples of spatial proximity patterns for first- and second-order
spatial lags. For each pattern, examples of first- and second-order lags are
illustrated. { indicates an arbitrary element of the lattice, and the x’s indicate
neighbors for the pattern at the indicated lag. Lattice columns in the figure
correspond to crop rows.

choice (e.g., rook, bishop, queen, or square). Alternatively, if, say,
wind direction exerted a strong influence on lattice element
interactions, then one-sided patterns such as the within- or across-
row patterns or analgous variants of the bishop pattern might be
appropriate. It may not be possible to select a particular pattern a
priori from within a subset of patterns that represents a logical
choice. However, in such a case, one may use the objective criterion
of selecting that pattern which maximizes the overall level of
autocorrelation.

In addition to the problem of specifying which elements are
neighbors of element i at any given spatial lag s (Eq. 1), there is also
the matter of how the effects of neighbors at a particular distance s
should be weighted. The choice of weight that is assigned to the set
of neighbors j of lattice element i should reflect the investigator’s
knowledge of how disease is influenced by underlying physical
processes such as propagule dispersal. For instance, knowledge of
the dispersal process involved in a particluar disease might suggest
the use of inverse lattice distance as the weighting measure
employed in the case of a large-spored, aerially dispersed
pathogen, whereas the square of the inverse distance might be
appropriate in the case of a pathogen that is spread by rain splash.
In the geography literature, binary neighbor weights have
commonly been used (6), in which case no a priori weighting based
on distance is assumed. By binary weight, we mean that the
weighting function assumes a value of 1 for lattice elements that are
s-order lag neighbors of element i, and a value of 0 otherwise.
Binary weights are the best choice when no logical basis for
assigning weights as a function of lag distance exists. However, in
the context of pathogen dispersal within a field that is g,overned by
physical processes, weighting by inverse distance or inverse of
squared distance may often be a sensible alternative to binary
weights. The generalized spatial lag operator, which includes a
weighting effect is then given by:

L"yu =w, h‘?‘j U"M” PI'; (2.]

in which w, is the weight applied to the neighbors of element i at
spatial lag s.

The spatial lag operator (Eq. 2) can be further generalized to
include simultaneous spatial and temporal lags:

L;—Pr.l’-k =w, h?: (‘V;.,;.;()!”", (3)

in which y,, and y,, have been replaced by y,, , and y,,,,
respectively, and k is the temporal lag order (L'y,, ). Hereafter, all
references to the lag operator are with respect to equation 3 unless
noted otherwise.

THE GENERAL CLASS OF SPATIO-TEMPORAL
TRANSFER FUNCTIONS

The general form of the STF expresses the system variable y,,
(e.g.,disease incidence in lattice element i at time ¢) as a function of
three basic variable types, each of which may be spatially and
temporally lagged with respect to y,,. System inputs are variables
thatare external to the system and which are not influenced by the
system (e.g., weather variables). Inputs will be spatially distributed
if the geographic scale of the model is suitably large. For example,
weather inputs to an STF for development of stripe rust in the
major wheat-producing states of the central United States would
certainly be spatially distributed, since each lattice element would
be on the order of 10° hectares. However, if the STF is intended to
describe epidemic development of stripe rust in a single field, then
weather inputs to the lattice elements can be considered to be fixed
at a given time 1.

In addition to system inputs, the STF may also include
temporally and spatially lagged values of the system variable
(L'y;,-4), and these represent the autoregressive component of the
STF. An STF may also include temporally and spatially lagged
error terms (L°¢, ), which represent the moving average
component of the model. The errors are often thought of as
unknown external inputs and are frequently referred to as
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disturbance terms, since the error terms account for the combined
effects of all external inputs that are not explicitly accounted for in
the vector of known external inputs.

Autoregressive models. A pure ST autoregressive process of
order / in space and m in time, or STAR(/, m) process, is given by:

.f\‘ m
Yie = =

B Ak“ \ )G.ﬁ,k L’ya'..r-k + f:’.r + H (4)

in which L'y, is defined as in equation 3; the §,, are parameters
that define y;, as a linear function of the terms L'y, ,:and uisa
constant that often is considered equal to zero. The first
summation is for spatial lags from 0 to /. The variable £, is the
error term for the i-th element and /-th time and represents the
difference between the observed and expected y,,. For example, a
STAR(I, 1) model would be:

Yir = BoaYi— B Ly, +§&, (5)

since, by convention, wo = | is usually assumed, and L"y,, _, is
simply the variable value in i. To make the meaning of equation 5
clear, suppose that y,, represents disease incidence in quadrat i at
time 1. Then, equation 5 states that disease incidence in element / at
time ¢ depends on the disease incidence observed in that same
element at time 7 — 1, and also depends on disease incidence in its
first nearest neighbors (Fig. 1) at time ¢ — 1.

Moving average models. A pure ST moving average process of
order p in space and ¢ in time, or STMA(p, g) process is given by:

B &
Yig :_‘l__u k2'= | ¥k L gu—k + §Ii.l + M (6)

in which L' £, _, represents the temporally and spatially lagged
error terms (analogous to Eq. 3), and p is a constant equal to the
mean of the y,,. The error terms are each assumed to be normally
distributed and to have an expectation= 0, constant variance, and
to be mutually uncorrelated; additionally, £, is uncorrelated with
.- As an example, an STMA(1, 1) model would have the form:

Yie = You ga’.r—l + Yia n §J‘,.'—1 3 ELJ {?}

in which we have again assumed that wo = 1, and that L"f,-., s
simply the value of £ in element i. The interpretation of equation 7
is strictly analogous to that for equation 5 except that predicted
disease incidence in element i at time 7 is now based on the observed
errors in the neighbors of element i, rather than on the disease
incidence in these neighbors. The inclusion of moving average
terms in a model accounts for the composite effect of any external
factors that influence system behavior, but that are not explicitly
included in the model. Notice that the sources of error are
partitioned into a mean effect at time ¢ (), as well as effects due to
each combination of a spatial lag s and temporal lag k. It has been
shown that low-order STMA models are equivalent to STAR
models of infinite order, so that STMA models may often provide
a more parsimonious model representation (3). Note also that the
terms of equation 6 are random variables, so that STMA models
are stochastic, whereas STAR models are deterministic, except for
the error term.

Mixed models. Assuming that there is only one system input, the
general STF model may be written as:

i "
o, Xy +w‘}—-0 A_}; i BoxL'Yir +

E_r E: | Vs Lot & tu (8)
in which L'x,, , represents the effect of temporally and spatially
distributed inputs (analogous to Eq. 3),and L’y,, ,and L', are
as previously defined (Egs. 4 and 6, respectively). When thea,, =0,
but both theg,, and vy, have nonzero terms for some s and k, the
STF is known as an ST autoregressive moving average
(STARMA) model. If the a,, are also nonzero for some s and k,
considerable problems occur in model identification, since the x;,
will generally be correlated with each other as well as with the y, ,.
Fortunately, as discussed above, for many epidemiological
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applications, it will often be the case that the x;, = constant forall
at a given time ¢, so that we can consider the somewhat simpler
modified STARMA model:

2 ; BoxL'Vin T

v [
=2 XT3
Yir T2, Ok TS 2

4

. q
gZ‘D kz—; | ’y-‘.kngu—k + fi.r + u (9)

As a further simplification, x, can be reduced to a constant and not
separable from u. The analytical problem of model identification
that we are concerned with in this paper involves determination of
the order of both the autoregressive and moving average
components for any process that can be represented by equation 9
using the methods of spatio-temporal autocorrelation analysis.

THE SPATIO-TEMPORAL AUTOCORRELATION
COEFFICIENT

Calculation, A simple form of the estimate of the ST
autocorrelation at spatial lag s and temporal lag k is given by
Bennett (3) and Martin and Oeppen (14), and which will be
designated r,,. However, the definition of r,, as an ST
autocorrelation statistic leads to some major theoretical problems
(3,11). Martin and Oeppen (14) proposed a solution to these
problems. Although the required computational algorithm is
considerably more complex than that for r, ,, the proposed statistic
provides the most general solution for estimating the partial
autocorrelations (see below). The elements of the autocorrelation
matrix R are calculated as:

T N . s
Fhjisk = Z zl (L' oy = VI LY — Y) (10)

t=vtli=
[z I3 wA.Fr  § =
[;E»u. 2 Ly, y){l"‘-[ém =, Ly, -y)il"é

in which r,,, is the autocorrelation between spatial lag 4 at time j
and spatial lag s at time k, L’ is the spatial lag operator defined in
equation 3, v=max(j, k), and y is the grand spatio-temporal mean
which is calculated as: 7= 33y, ,/ NT. The first row and column of
R contain the ST autocorrelation function r ;. In addition, R is
symmetric, and contains 1’s on the diagonal.

The number of significant temporal and spatial lag orders of the
autoregressive and moving average components of an STF can be
judged in part from statistical tests of the ST autocorrelations and
partial autocorrelations. Bennett (2,3) has warned that patterns in
the autocorrelogram are affected by residual autocorrelations and
multicollinearity, and that interpretation should be based on a
careful examination of both the autocorrelogram and partial
autocorrelogram. Detailed discussion on the interpretation of
these patterns can be found in Bennett (3). For a correlation matrix
of the form of R, Kendall and Stuart (11) define the partial
autocorrelation between y,, and L'y;, _, as:

Woosk =~ Copunl [(Cu.u.u.u} (Cs,k.s.k)] (11

in which C,, ,, is the cofactor of r,; ,, in the determinant of R.
Interpretation of the autocorrelogram. The pattern of
autocorrelations (autocorrelogram) and partial autocorrelations
(partial autocorrelogram) assume characteristic forms, depending
on the type and order of STARMA process involved (2,3,14). Fora
purely autoregressive process of order / in space and m in time
(STAR[/, m]), the autocorrelations will decay approximately
exponentially (or in a damped exponential-sinusoidal pattern)
over spatial and temporal lags, whereas the partials will be cut off
(as opposed to trailing off gradually) after /lags in space and m lags
in time. In contrast, for a pure moving average process of order p in
space and order g in time (STMA[p, g]), the autocorrelations will
be cut off after p lags in space and g lags in time, while the partials
will decay exponentially. In the case of a mixed model (STARMA
[1,m, p, q]). the autocorrelations begin to decay exponentially after
the first p — I lags in space and ¢ — m lags in time, while the partials




begin to decay after the first / — p lags in space and m — g lags in
time,

However, it should be noted that the patterns we have described
are, in effect, idealizations, and that, in general, the pattern may
not always be so easily interpreted (3). The mixed STARMA
model can be particularly difficult to identify when the maximum
number of temporal and spatial lags is limited. Nevertheless
statistical tests derived from time series analysis have been
suggested as an aid to the interpretation of spatio-temporal
autocorrelograms (3).

A test of the significance of the autocorrelations was derived by
Box and Jenkins (4) from a simplified form of Bartlett’s (1)
formulae for the variance and covariance of the estimated
autocorrelations. Jenkins (10) suggested using Quenouille’s (20)
formula for the variance of the estimate of the partial
autocorrelations. Because the distributions of the estimates of the
ST autocorrelations and partial autocorrelations are asymptotically
normal, the significance of the estimates are usually tested with the
familiar standard normal (z) statistic (10). However, itisimportant
to note that tests conducted on the autocorrelations are tests of the
significance of the moving average terms, while tests on the partials
are tests of the significance of the autoregressive terms.

STATIONARITY REQUIREMENTS

An additional consideration that is related to the interpretation
of pattern in autocorrelograms is the matter of system stationarity.
A statistic (or function) is said to be stationary if the values (or
functional form) are time invariant. Strict application of the
methods of spatio-temporal autocorrelation requires that the
system under study be stationary in order for model parameter
estimates to have a meaningful physical interpretation (3). As will
be seen below, nonstationarity will generally be the rule in plant
pathosystems, so it is necessary to be able to recognize the
symptoms of nonstationarity and take corrective steps where
needed. Three sources of nonstationarity need to be considered.
These are discussed in great detail by Bennett (3), but we
summarize them briefly here.

Nonstationarity of level. Epidemiological systems are typically
characterized by strong temporal trends in mean level of disease
within a field as evidenced by the common use of the logistic or
monomolecular models to represent disease progress. Furthermore,
diseases with a strong focal character will exhibit strong spatial
trends across a field at any given time ¢. Nonstationarity of level is
indicated by a slow decline in autocorrelations with increasing lags.
A basic assumption of the analytical methods we are describing is
that the expected value of y,, is the same for all / and ¢, or,
equivalently, that the of y process is homogeneous and isotropic.
Fortunately, temporal and spatial trends are generally easy to
recognize and can be removed by temporal, spatial, or
simultaneoustemporal and spatial differencing. First-order
temporal, spatial, and simultaneous temporal-spatial differencing
are defined, respectively, by:

Vv = Vi = Vi (12a)
vsyr'.l = yi’.r - L[y:'.r []2b)
Vsrbie = Vi = Vi — L'y + Ly, (12¢)

in which V,, V,, and Vg, are the respective difference operators.
Any of the three types of differencing can be invoked by STAUTO,
so that the required transformations can be easily implemented
when needed.

Nonstationarity of variance. Problems similar to those noted
above may also arise with respect to Var[y,,]. In these
circumstances, a suitable transformation of y,, is usually all that is
required. Our program includes seven transformation options,
including those for the logistic and monomolecular among others.

Nonstationarity of process. This form of nonstationarity occurs
when the model parameters are themselves functions of time or
some other ignored system quantity. Our experience with analysis

of epidemiological systems has led us to conclude that most
instances of nonstationarity in such systems can be handled by the
methods already described, and that any persistent nonstationarity
is most likely attributable to nonstationarity of process, in which
case it may be possible to partition the data set into two or more
stationary ones.

AN EXAMPLE OF SPATIO-TEMPORAL AUTO-
CORRELATION ANALYSIS

Description of the system. Epidemic development of leather rot
of strawberry (Fragaria X ananassa Duch. ‘Midway’), caused by
Phytophthora cactorum (Leb. & Cohn) Schroet., was monitored
insix field plots near Wooster, OH, in spring 1986. Each plot was 2
m long and three rows wide. Both sides of each row in a plot were
divided into ten 20-cm-long quadrats, and the five flower cymes
closest to the row edge were tagged in each quadrat. Thus, one plot
constituted a 6 X 10 lattice. As an example of the analytical
methods, preliminary results are presented for one of the plots.

Monitoring of epidemic development. Because leather rot of
strawberry is spread by rain splash (21), assessments of epidemic
development were made 5 days (approximate length of latent
period) after a rain event, rather than at regular chronological
intervals. At each assessment date, the number of tagged cymes
bearing one or more berries infected with P. cactorum was
recorded. Assessments were made for a series of 10 rain events, by
which time incidence of cyme infections approached 100%,.

Results of spatio-temporal autocorrelation analysis. Epidemic
development in the example plot was characterized by a sigmoid
curve, so the logistic transformation was applied to the data using
Haldane’s (9) correction for the proportion of disease when
incidence equaled 0 or 1, and an analysis was performed on the
nondifferenced data using binary weights and the rook’s definition
of spatial proximity. Aspatial summary statistics output by the
program showed a strong temporal trend in mean disease level for
both raw and transformed disease incidence as would be expected
(Table I). Notice that a strong trend in the variance also is apparent
for both raw and transformed data (Table 1).

The autocorrelogram and partial autocorrelogram for
nondifferenced data are presented fora maximum spatial lag of s =
3 and a maximum temporal lag of k = 3 (Table 2). The
autocorrelogram indicates that disease incidence among neighbors
is highly correlated with disease incidence in lattice element 7 at
time ¢ for all spatial lags and for temporal lags < 2 (P < 0.001,
Table 2). The slow decline in autocorrelations over spatial lag is a
strong indicator of a nonstationary spatial process and is
consistent with the focal nature of epidemic development in this
system. Although the temporalautocorrelations decay much more
rapidly than the spatial autocorrelations, the general pattern here

TABLE . Aspatial statistics for leather rot development in strawberry for
raw data and for analysis using the logit transformation, binary weights,
the rook’s definition of spatial proximity, and no differencing

Sample Raw data Tranformed data”
sequence Mean® Variance Mean Variance

1 0.33 0.29 —1.98 0.42

2 0.40 0.41 -1.92 0.52

3 0.43 0.41 —1.88 0.54

4 0.57 0.48 =1.72 0.59

5 0.77 0.71 —-1.51 0.74

6 0.93 0.96 —1.34 0.94

7 1.52 1.55 —0.84 1.23

8 2.47 3.02 —0.08 2.40

9 2.93 183 0.34 319

10 3.13 4.12 0.57 3.50

“Means for raw data are for the mean number of strawberry cymes bearing
at least one infected fruit out of a possible maximum of five cymes per
quadrat. Each plot consisted of a 6 by 10 lattice of quadrats.

*Raw data transformed to logits based a possible maximum of five cymes
per quadrat.
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also is suggestive of a nonstationary process, a fact readily
confirmed by the aspatial statistics (Table ). In contrast to the
high autocorrelations seen in the correlogram, the partial
autocorrelations for nondifferenced data indicate that only first-
order autoregressive temporal effects at 0 and | spatial lags are
significant, suggesting a STAR(I, 1) model. However, as we have
indicated previously, the coefficients of a model based on the
analysis of nonstationary data are not readily interpretable in
terms of real physical processes.

We also present results for the same data set, but using temporal
differencing and inverse distance weights (Tables 3 and 4). The
logistic transformation and the rook’ definition of spatial
proximity have been maintained in this analysis. Temporal
differencing of the data removed most of the temporal trend in
mean disease incidence as well as the nonstationarity of variance
(Tables 3 and 4). Use of inverse distance weighting probably
represents a conservative estimate of the effect of distance on the
epidemic process in our example. Nonetheless, the combination of
temporal differencing and inverse distance weighting appear to
remove most evidence of nonstationarity (Table 4), so that there
appears to be no need to employ simultaneous spatial and
temporal differencing in this instance. The patterns seen in the
autocorrelogram and partial autocorrelogram indicate that the
generating process for this leather rot epidemic might be modeled
as a STARIMAC(I, 1, I, 1) process (when differencing has been
employed the model is known as an ST autoregressive integrated
moving average, or STARIMA model). Note, however, that at one
temporal lag, the zero-order spatial lag is nonsignificant for both
the moving average process (autocorrelogram) and the
autoregressive process (partial autocorrelogram). Consequently,

TABLE 2. Spatio-temporal correlogram and partial correlogram for data
transformed by logits, and using binary weights, the rook’s definition of
spatial proximity, and no differencing

Autocorrelations®
Temporal Spatial lag order
lag order 0 1 2 3
| 0.88*** 0.75%** 0.65%%* 0.59%**
2 0.68%** 0.55%%* 0.45%*% 0.39%**
3 0.40%*# 0.25% 0.20* 0.16
Partial autocorrelations
Temporal Spatial lag order
lag order 0 1 2 3
1 0.64%** (.27%%% 0.07 0.11*
2 —0.00 —0.10* —0.06 -0.09
3 -0.07 —-0.03 —0.00 0.03

"* ** and *** indicate that the estimate is significantly different from 0 at
P=0.05, P=0.01, and P=0.001, respectively.

TABLE 3. Aspatial statistics for leather rot development in strawberry
using the logit tranformation, inverse distance weights, the rook’s
definition of spatial proximity, and temporal differencing”

Sample sequence Mean Variance
2 0.06 0.05
3 0.04 0.05
4 0.16 0.18
5 0.20 0.23
6 0.17 0.17
7 0.50 0.52
8 0.76 0.92
9 0.42 0.84
10 0.22 0.32

“Counts of cymes per quadrat bearing at least one infected fruit per cyme
were transformed to logits based on a possible maximum of five cymes per
quadrat. Temporal differencing was performed on the logit-transformed
data (Eq. 12a in text). Means are for the resulting mean differences in the
logit of disease incidence.
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for the temporally differenced data, the parameters Bo,1 and o, 1
are both equal to 0, so that the model can be written as:

Vv =Bl Vo) + vl (Vo) + €, (13)
in which V, is the temporal difference operator (Eq. 12a).

DISCUSSION AND CONCLUSIONS

Equation 13 indicates that the change in disease incidence, as
represented by change in logits, in lattice element / at time #(V,y,,)
depends on several factors. First, as might well be anticipated,
change in disease incidence in element 7 at time ¢ is dependent on
the previously observed value of disease incidence in i. Also, the
spatial dependence of disease incidence in element i on change in
disease incidence in surrounding elements does not extend beyond
the first nearest neighbors of element i, and this spatial dependence
only extends back to time t — 1 (Eq. 13). The low spatial lag order of
the model (Eq. 13) is consistent with the observation that infection
gradients of splash-dispersed organisms are characteristically very
steep (15). Furthermore, a maximum temporal lag order of | was
expected, since spread of leather rot occurs in discrete, easily
recognizable events, and the timing of disease assessments could be
determined with a high degree of accuracy.

In the case of pathogens whose propagules are liberated by wind,
the problem of selecting an appropriate sampling interval will be
more complex. Geographers, who have analyzed the spread of
various diseases in human populations, have used the disease
incubation period as the sampling interval (6-8). In the case of
plant disease epidemics, the latent period of a disease might serve
as an appropriate sampling interval. The selection of an
appropriate sampling interval is important, since an interval that is
too small relative to the effective rate of the epidemic process will
cause the values of temporal autocorrelations to remain artificially
high (14). On the other hand, if a sampling interval is selected that
is too large, temporal dependencies that actually exist may not be
reflected in the resulting autocorrelogram.

The moving average component of equation I3 also is of order |
in space and time. The occurrence of a significant moving average
term in equation 13 may have been due to the fact that weather
factors that might have affected epidemic development were not
included in this example analysis. For example, the inclusion of
moving average terms in equation 13 may indicate that the
observed pattern of leather rot development was partly the result of
local processes such as inoculum dispersal that depend on the
degree of flooding in individual quadrats. Variation in such factors
as the degree of local flooding would be difficult to quantity, and
are probably best accounted for as moving average (e.g., error)
terms. The full STARIMAC(I, I, 1, 1) model would then indicate
that local dispersal (moving average process) was superimposed on
a planar process (autoregressive process).

TABLE 4. Spatio-temporal correlogram and partial correlogram for data
transformed by logits, and using inverse distance weights, the rook’s
definition of spatial proximity, and temporal differencing

Autocorrelations”
Spatial lag order

Temporal

lag order 0 l 2 3
1 0.05 0.26** 0.04 0.00
2 0.03 0.07 =0.06 -0.12
3 -0.05 —0.1 —0.10 —-0.11

Partial autocorrelations

Temporal Spatial lag order

lag order 0 | 2 3
I —0.04 0.22%%* 0.04 0.07
2 —0.03 0.04 —0.04 —0.08
3 -0.04 0.05 —0.00 =0.01

“** and *** indicate that the estimate is significantly different from 0 at
P=0.01,and P=0.001, respectively.




ST autocorrelation analysis is a potentially powerful tool, but
there are difficulties associated with its use because the selection of
an appropriate proximity pattern and distance weighting criterion
is generally not a trivial matter. The rook proximity pattern and
binary weights are perhaps the most commonly used assumptions
in the absence of definitive data, and their widespread use and
acceptance within geography have made them standards (6). The
attractiveness of the rook pattern lies in its simplicity and
symmetry. As suggested earlier, the presence of prevailing winds
may indicate the need for an across- or within-row, or even a
diagonal pattern.

Our program, STAUTO, also includes provision for differential
weighting of neighbors included in a lag operator summation (Eq.
3). Differential weighting is achieved by specifying a “barrier
effect,” which operates across lattice columns (which are assumed
to represent crop rows). Crop row barrier effects can be specified in
STAUTO by defining a barrier effect for each pair of adjacent crop
rows. The specification of barrier effects in an analysis involves an
extension of the equation for lagged neighbor summation (Eq. 3)
so that it is possible to account for differences in pathogen dispersal
within as opposed to across rows. With respect to equation 3,
barrier effects are specified as:

Ljyi.i-k =W \T;U' ('br..iyb,!-k)l'll ﬂ_'; ( [4]

in which b,  is the barrier effect for rows rand r + | at spatial lag s,
and other terms are as defined in equation 3. Barrier effects are
specified for each adjacent pair of rows rand r+ 1, and these effects
are assumed to be multiplicative across rows. For example, if the
barrier effect across rows 1 and 2is 0.5, and the effect across rows 2
and 3 is 0.4, then at spatial lag s = 2 the total effect across rows 1
and 3 would be 0.2. Note that in STAUTO, b, is always defined to
be | for an element that occupies the same data column (crop row)
as element i. Use of a barrier effect might be considered in the
analysis of an epidemic involving a row crop in which the rows
present significant barriers to propagule dispersal. When the
barrier effect option is combined with the distance weighting
option in the program, relatively complex patterns of weights can
be specified.

When two or more alternative patterns appear to be equally
feasible on a priori grounds, the best choice would appear to be to
select that pattern that produces the highest levels of ST
autocorrelation in the lower-order spatial and temporal lags. Such
anapproach amounts to using an objective criterion as the basis for
pattern selection. In our experience, the interpretation of ST
autocorrelograms is not drastically different when results based on
similar proximity patterns are compared. For instance, the square
pattern is only a minor modification of the queen pattern, and
results with these two patterns are usually quite similar. In
contrast, the results obtained when using the rook pattern will
often be quite different from the two latter patterns. The rook
pattern does not include those elements j that fall on a 45 degree
diagonal from element i. If the values of diagonal elements are
poorly correlated with those in element i, then the rook pattern will
yield generally higher ST autocorrelations. Similarly, the bishop
pattern usually yields very different ST autocorrelograms from any
of the above three patterns.

Binary distance weighting should be preferred in the absence of
independent evidence to the contrary, but it should be noted that
this weighting criterion will almost always produce higher ST
autocorrelations than inverse distance weighting or similar
schemes. However, the selection of binary weights, when, in fact,
inverse distance weighting ought to have been used, does not pose
significant problems for parameter estimation in the subsequent
model specification stage, since, in the course of model fitting,
parameter estimates will automatically be adjusted accordingly. At
the worst, one might tend to overestimate the significance of
higher-order spatial lags when using binary weighting.
Consequently, we would suggest that higher-order spatial lag
terms that are only marginally significant be ignored when binary
weights are used. In connection with weight selection, it should
also be noted that weights can only be selected to a level of scale.

That is, the weight vector (1.0, 0.5, 0.25), corresponding to weights
at spatial lags s = 0, s = |, and s = 2, respectively, is identical in
effect to the weight vector (0.5, 0.25, 0.125). Thus, the arbitrariness
of defining wy = 1.0 is more apparent than real.

Throughout this paper we have suggested the use of a number of
analytical operations, some of which reduce the level of ST
autocorrelation apparent in the data, whereas others have the
opposite effect. Forinstance, temporal and/ or spatial differencing
typically remove much of the autocorrelation, whereas the
criterion for pattern selection is improvement in autocorrelation.
Also, binary distance weighting will typically yield higher
autocorrelations than other weighting schemes. The rationale for
each effect can be summarized as follows. If there is strong
theoretical or empirical evidence for a particular form of distance
weighting, then the weighting should be applied @ priori without
regard to its effect on the level of spatial autocorrelations. The next
major consideration is whether or not the data show evidence of
nonstationarity as indicated by the failure of autocorrelations to
decline rapidly over space and time, since a basic assumption of the
analysis is that the spatio-temporal series is stationary.
Epidemiological data will frequently require at least temporal
differencing, since most studies deal with epidemics that are
nondecreasing. If a weighting scheme other than binary weights is
used, temporal differencing alone may be sufficient to achieve
stationarity in the data. Ideally, the specification of barrier effects
and proximity pattern also would be based on a priori
considerations. However, practically, an investigator will
frequently not have the necessary data to support strongly one
particular alternative over a number of other closely related ones.
In such circumstances, the objective criterion of maximizing
autocorrelations with the emphisis on lower-order ones, seems
logical.

Spatio-temporal autocorrelation analysis represents an
important new approach to the study of spatial pattern in plant
disease epidemiology. It is distinct from previous analytical
methods in that the logical endpoint of analysis is not simply a
statistical description of the observations, but rather a model that
summarizes the spatial and temporal dependencies in the data, and
therefore a model that can account for the evolution of observed
patterns. Although such models are not mechanistic in the strict
sense, they contain clear implications for spread mechanisms.
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