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ABSTRACT

van den Bosch, F., Zadoks, J. C., and Metz, J. A. J. 1988. Focus expansion in plant disease. I: The constant rate of focus expansion. Phytopathology
78:54-58.

According to theory, a focus of disease in a crop expands radially at a and contact distribution describes inoculum dispersal. Gross reproduction
rate that asymptotically approaches a constant value. This value can be is the total number of victimized individuals produced by a single infectant
calculated from the time kernel, contact distribution, and gross placed in a population consisting of suscepts only. Definitions and
reproduction. Time kernel describes the inoculum production through time mathematical evidence are given.

Additional key words: epidemiology, focus, model.

From a geometric point of view, epidemics are classified as diseased individuals per unit of area. In experimental situations, all

general, focal, or intermediate (18,20). Focal epidemics begin with quantities should be measured as numbers of individuals (sites,

foci that can be initiated by a single infectious unit. Such epidemics leaves, or plants) and not as percentage of leaf area. At low disease

were described for stripe rust (Puccinia striiformis West.) on wheat severities, there is an approximately linear correspondence

by Zadoks (18) and for potato late blight (Phytophthora infestans between diseased leaf area and the number of diseased individuals,

(Mont.) de Bary) by Zaag (17). At the other end of the scale are the so that-with caution-percentage values can be used.
general epidemics, where initial inoculum is so abundant that foci
are inconspicuous. General epidemics occur when stripe rust
inoculum overwinters profusely or when massive amounts of
windborne stem rust (Puccinia graminis Pers.) inoculum arrive Xd
from afar.

When a stone is thrown into a still pond, the disturbance of the 1.
mirror-flat water surface appears as a series of circular waves that
expand gradually. The outer wave seems to travel at a constant
radial velocity. A disease focus, originating from a single diseased
individual, expands in a circular wavelike pattern not dissimilar 85
from the outer traveling wave on the water surface. Kampmeijer
and Zadoks (4,19), studying focal behavior by means of the
dynamic simulator EPIMUL, found that the front of the focus

expanded radially at a constant velocity once an initial phase of
focus buildup had passed by. In other words, the velocity of the
epidemic wave approaches a limit value (Fig. 1).

In recent papers, Minogue and Fry (9,10) studied the spread of .5
an epidemic in one-dimensional space. They used a constant
inoculum production and fixed latency and infectious periods. The
dispersal function was a double geometric distribution.
Application of stochastic and deterministic versions of the model 5
provided much insight in the spatial spread of epidemics. They
indicated the need for extension of the model to cover asymmetric
inoculum dispersal, more realistic patterns of spore production, 60
and spread through two-dimensional space.

Except for asymmetric dispersal, this extension can be found in 55
the more general and abstract epidemiologic model developed
independently by Thieme (13,14) and Diekmann (1,2). A detailed 0."
account of the model formulation in the nonspatial case is given 0 5 1 0
(7,8). The present paper elaborates on some phytopathologically d
interesting aspects of their models.The term front is defined as that part of the disease profile that is Fig. 1. Disease gradients of growing focus plotted at various days. Focus

phasid e -in e .s thet foremosthe teaile profile twas started by single effective spore. Abscissa: distance d from center of
in the presaturation phase-i.e., the foremost tail of the profile focus measured in compartments. Ordinate: severity xd. Entries: number of
(4,19). The disease profile is quantified in terms of densities of days from start. From Zadoks and Kampmeijer (19). After 70 days,

distance between two successive disease profiles is about constant and rate
of focus expansion has reached limit value. (Reprinted with permission of

@1988 The American Phytopathological Society Ann. NY Acad. Sci. 287:171 (1977))
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DESCRIPTION OF THE MODEL Assumptions about the disease. 2a. Disease is physically
transferred from an infectant to a suscept in the form of inoculum

The model will be derived to calculate the asymptotic wave consisting of infectious units (20), as (for example) fungal spores.
velocity of the front of a focal epidemic. The model is based on 2b. The function describing the mean production of infectious
knowledge of the underlying phenomena such as spore production, units by a victim at time r after infection (1(r)) is called time kernel
spore dispersal, and effectiveness of infectious units. The model is [Niu • V-F Nvi-']. (For symbol explanations, see Table 1.) The I
based on a set of assumptions that will be discussed first. Symbols function includes latency period and infectious period: during
are explained in Table 1. Physical dimensions of variables are latency I(-) = 0.
specified within square brackets. 2c. The progress of the disease within an individual is fully

Assumptions about the host population. Ia. The host autonomous, e.g., not influenced by other victims.
population consists of individuals, called suscepts, that are all Assumptions about the inoculum. 3a. Inoculum (in the form of
equally susceptible to the disease. For individual, one may read infectious units) moves from an infectant (the source) to a suscept
plant, leaf, or site (a limited area ofthe leafthat can become a lesion (the target) with positions r = (er, t2) and 5F = (xl,x2),

[4]). The population of suscepts is distributed homogeneously over respectively.
an infinite two-dimensional habitat and initially has density So 3b. The infectivity of the infectious units is constant.
[NUL-2]. 3c. The probability per unit area that an infectious unit released

lb. After infection, a suscept becomes a victim. A victim passes at F will be deposited at V is described by a function D(", F)
through three phases. Phase I is noninfectious because the disease called contact distribution. This probability is a function of the
is in its latency period. During phase 2, the victim is infectious; it is distance between r and V only. Consequently, D(7, C) is
then called an infectant. During phase 3, the victim is again rotationally symmetric.
noninfectious because of death or immunity. A victim thus cannot
become a suscept again. D(V, F) = D(\/[I x, -_ l2 + ix2 - t21).

I c. A suscept occupies an area ý. Therefore, lSo is the fraction of
the two-dimensional habitat covered by suscepts plus victims. The dimension of D is [L-2]. Conceptually the contact distribution

I d. The population of suscepts and the total number of victims and Gregory's (3) primary gradient are equal apart from being
are so large that a deterministic model can be used. Single defined in two and one dimension, respectively.
individuals within the population can, however, be subject to 3d. The decrease in the density of suscepts at time t and position
stochastic processes. V, which is also the increase in the density of victims, equals the

le. Changes in the number of suscepts by growth, birth, death, or product of the density of suscepts and the rate of victimization y at
migration are disregarded except when death is caused by the 7F. The rate of victimization, which is the probability per unit of
disease under consideration. time that a suscept becomes a victim, is only dependent on the total

number of infectious units arriving at V from all sources F. This is
the usual "law of mass action" assumption.

3e. An infectious unit is not necessarily effective. It may be
TABLE 1. List of symbols deposited on the ground or it may not infect even though deposited

on a suscept. The former effect is accounted for by iSo, the fraction
Symbol Explanation Dimensiona of the habitat covered by individuals, which is also the chance that
a p/i [1] an infectious unit will be deposited on an individual. The latter
c Asymptotic velocity of frontal wave [L" T-'] effect is accounted for by the effectiveness i/, the chance that an
c* = ic/a, scaled wave velocity [1] infectious unit will be effective. The dimension of / = [Nvi ' Nit-'].
-YSo Gross reproduction ratio [1] Note that q1 does not refer to Vanderplank's (15) correction factor

D(V, •) Contact distribution, two-dimensional (I - x). The correction for decreasing numbers of susceptibles is
distribution of inoculum__roduced by accounted for by the occurrence of S(t, x), the current density of
individual positioned at [Lu2] suscepts (instead of So), in equation (1.1).

D(xi) Marginal distribution of D(x, l) [uL]
Area occupied by suscept [L2 N•su ] DEVELOPMENT OF THE MODEL

I(T) Time kernel, number of infectious units
produced per infectant per unit of time [Ni T_' -Nai'] Here we shall give a phytopathologically oriented derivation,

Total number of infectious units produced
per infectant [Nu Nv--'] accompanied by a discussion of the dimensions. A more abstract

i(T) Normalized time kernel [T-'] derivation can be found in Thieme (13) and Diekmann (1).
i Infectious period [T] In accordance with assumption 3d, we can write:
X Shape parameter of epidemic wave front [L-']
L Auxiliary function (Diekmann [1]) [1] 0_S (t, 7) -S(t, F) X y(t, 7) (1.1)
l(c, X) = lnL(c, X) [1] at

Source position [-]
p Latency period [T] [Ns," L-2 " T-'] = [Na. L-2] X [T-'].
S(t, -7) Density of suscepts at time t and position

2V, in number per unit area [Nu L-2 The minus sign indicates loss of suscepts, victimization. For
a Variance of contact distribution [L2] symbol exlnainsts le 1.

t Time [T] symbol explanations, see Table 1.

r Period of time evolved since infection of To calculate y(t, x ) we observe that victimization is the result of

individual: age of infection [T] two different groups of infectants. The first group is the infectants

Target position or position where epidemic that were introduced into the susceptible population at t 0. These
is evaluated [-] individuals started the epidemic. The relative rate of victimization

y(t, -) Relative rate of victimization at target resulting from these individuals will be denoted by yo(t, 7). The
position V, or relative infection rate, in second group is the individuals that were victimized after t= 0. The
number of victims per number of relative rate of victimization resulting from these individuals will
suscepts per unit of time [N- 2] be denoted by yi(t, 7).

so Initial density of suscepts [Nouc Lper Multiplication of the time kernel by the contact distribution41 Effectiveness, in number of victims per

infectious unit [Ni" Ni-.'] gives the inoculum supply at target xF resulting from victims at

aFor use of dimensions, see Zadoks and Schein (20). Dimension number position F that were infected T- ago:

[N] is subdivided by indexes iu = infectious units, su = suscepts, and vi = [i:2]

victims. 1(7-) X D(7, •) [Ni." T-1" Ni-1] X [L 2]. (1.2)
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Furthermore, at position F the rate of victimization T ago is: The procedure to measure -ySo implied by the theoretical
definition is not feasible in practice. When the number of

-_S(t- r, T)[N L- 2  -]. (1.3) replacements per unit area is low in comparison with the density of
at suscepts, a fair approximation is obtained without replacements,

though contamination by later generations of victims can be
Multiplication of equations 1.3 and 1.2, the area occupied by a troublesome. In the third paper we shall discuss more practical
single suscept (c), and the efficiency factor (q/) gives the rate of ways to measure ySo.
victimization at target V resulting from all infectants at source
infected a period r ago. Integration of the product over r and over ASYMPTOTIC VELOCITY OF THE EPIDEMIC WAVE
all sources F produces the rate of victimization at position V.
Equation 1.1 becomes: If the contact distribution is rotationally symmetric, as we

_asassumed, the focus should have circular symmetry as well.
S(t)=S(t V) X -f f 2S (t - T,) X I(T) X Therefore, contours of equal disease intensity behave like

at a0 R at expanding circles. An ever-expanding circle will, in the long run,
( become locally indistinguishable from a straight line. For thatD(', •)X ý X qi X dC X dr - Aot, V2) (1.4) reason, the focal front in a certain direction should eventually

behave like a planar front. Therefore, it should be possible to
deduce the behavior of the focal front by considering planar

[N," L- 2 '] = [N,. L-] X traveling wave solutions of equation 1.4; i.e., solutions having a
- constant disease profile in a certain (say the x2) direction that

[N. [2 • T-] X [N, Nvi-' T '] X [2] moves unchanging with a constant speed (in the x, direction). If we
2] consider such a planar wave, it necessarily satisfies in the x,X [L2 N,,ý'] X [Nv< Ni,.-'] X [L2] [T]. direction a one-dimensional analog of equation 1.4 with the

(marginal) contact distribution

Note that the integration over the habitat is a double integration
over the two variables e% and t2. Therefore, the dimension of dc is
given as [L2]. D(x,) f D(xi, x2)dx 2. (3.1)

The initial rate of victimization yo(t, F) can be described in terms -0
of 1(r), D(V, F), ý, and i# as done above foryi(t, 7). However, the
influence of the initial inoculum that started the epidemic will (Calculating the number of infectious units deposited at a certain
approach zero when time t becomes sufficiently large; place that is derived from a straight line of infectants with a
consequently, yo(t, 7F) may then be neglected. constant age distribution equals adding up all contributions from

all victims on that line. Taking the marginal distribution just
GROSS REPRODUCTION amounts to adding up these contributions.)

The results of Diekmann (1,2) and Thieme (13,14) imply that the

The foregoing model is based on a set of underlying phenomena speed, c, of the (only) traveling wave solution that matters can be
defined in the assumptions. These phenomena can be measured, at calculated from
least in principle. However, some of them, especially the efficiency l(c, X) 0
factor 0, are difficult to measure. Several factors can be lumpedinto a gross reproduction -'So, which is relatively easy to assess. (3.2)

This gross reproduction is defined theoretically as the number of (e, X) = 0
daughter victims that would be produced by a single mother ax
victim, during the whole course of its disease, if the surrounding
population were to consist permanently of suscepts only (e.g., by
every daughter victim being replaced immediately by a new where
suscept).

The total number of infectious units produced by a single l(c, X)= In L(c, X) (3.3)
individual during the whole course of its disease is given by:

I ((r)dr (2.1) L(c, X) ySo f e-T i(r)drT e-\xl D(xl)dxl. (3.4)
0 0 -00

The front of the wave has an exponential shape with parameter X:
[Niu" Nvi-1] -[N~u Nvi-1 -F'] X [T].

Define So-S cc exp. X(ct - xi) (3.5)Definer)-I(22
i(T) I (T)/ I (2.2) where So - S is the number of victims.

[T-]= [Niý. Ni--' T-l] X [Ni. Ni-l]-'. In theory, there also exist waves with speeds larger than c.
However, Diekmann and Thieme have proved that if one moves

The resulting function i(T) has unit area. Only the shape of I(r) is from the center of the focus with a speed larger than c one will
retained in i(-). i(f) is a relative rate. The function i is called eventually outrun the focus, whereas if one moves with a speed
normalized time kernel, smaller than c one will eventually encounter the terminal severity.

In conclusion, we can say that if the gross reproduction, timeMultiplying I with the efficiency factor i/ gives the total number kreadmria otc itiuinaekon h
of infectious units that will be effective when deposited on a kernel, and marginal contact distribution are known, the
suscept. The chance that an infectious unit actually is deposited on asymptotic velocity of the epidemic wave can be calculated
a suscept equals ýSo. Therefore: numerically from equations 3.2-3.4.

YSo f I(r)dr X C X So X q1 (2.3) AN EXAMPLE
0 The simulation model introduced in EPIMUL (4,19) simulates a

[1] = [Niu • Nvi-1 • T-'] X [T] X [L2 • Nsu-1] X spatial variant of the Vanderplank (15) equation. The time kernel
[Nsu • L[2] X [Nvi" Niu-']. in EPIMUL is a block function with a latency period p and an
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infectious period i (Fig. 2). It is written as (due to low ySo) will retard epidemic progress.

0 if T < p or r> p + i DISCUSSION
i(r) = [T-l] (4.1) This paper describes a generalized model for the spread of

Fi, if p < r • p + i infectious disease in two-dimensional space. The advantage of the
present model is that any pattern of inoculum production (time

and kernel) and of spatial distribution of inoculum (contact
distribution) can be inserted. The model is a generalization of the

P+i models by Kendall (5), Mollison (11), and Minogue and Fry (9,10).

e-cr i(r)dr f eXcT i1 dr = epoX (i - ecA)/icX. (4.2) Minogue and Fry(9,10) introduced the gradient parameter,g, as
0 the slope of the straight line resulting from plotting the logit of

The contact distribution in EPIMUL is a two-dimensional disease severity against distance from the point of inoculation. Itis

Gaussian distribution with variance a 2. From statistical theory it a characteristic of the entire wave, and its use depends on the
follows that D(x) is the one-dimensional Gaussian distribution, so adequacy of the logistic equation as a description of the shape of
that the wave. In this paper we introduced the shape parameter, X, to

characterize the steepness of the front of the wave, which always
+ 2)G\0)has the shape of an exponential curve (1, 13,14; van den Bosch et al,

S e-\x D(x)dx = e(I/2)( 1 )2  (4.3) inpreparation). The X is equivalent to g for low disease levels. Note

that the local apparent infection rate, r, of Minogue and Fry is the
(see, e.g., Kendall [6]). equivalent to Xc in the Diekmann/Thieme model.

Combination of equations 3.4, 4.2, and 4.3 gives The assumptions underlying the model approximately fit the
agricultural situation, where crops functioning as host populations
are nearly homogeneous. Not infrequently, initial infections are

L(c, ) ySo e-px (I - e)ic e(I/2)() 2  (44) sufficiently spread out for foci to develop.

Lc )2Equations 3.1-3.4 allow calculation of the velocity with which
the focus will eventually expand. The speed with which the
asymptotic velocity is attained is a different matter. Zadoks and

and with equation 3.3

l(c, X) = In -ySo - pcX + In (1 - e-icX) + (1/2)(Xa) 2 
- In (icX).

After rearrangement, equation 3.2 becomes ,u T)

I - ac*,K1 
- X- [1 - (a + l)c*)\-l - -2]ec*x -0

/S0= c*~ , e(ax c* X X-(1/2)X2
) (4.5)

I - e(-c*x) 0
0 pO p+i "-''

where a = p/i, and 
[T/T] = [1]

c* = ic/a. [T L/T/ L] = [1]

Unfortunately, equation 4.5 cannot be solved explicitly. For given latency period infectious period victim dead

values of c* and a, X can be derived numerically from the first part Fig. 2. Normalized time kernel showing relative infectiousness, i(r), against

of equation 4.5. Substitution of this X in the second part gives -/So. time after infection, T, in shape of block function.

The numerical solution of such equations can be programmed on a

programmable pocket calculator (12). Some results are given in
Figure 3.

The parameters p/i and a also appear in EPI MU L, whereas "ySo P/i

equals the daily multiplication factor times the infectious period (i) 15 0.05 0.1
(4). For Figure 1, the value ofc* can be derived as c*= ci/a, wherec /
is the frontal displacement rate in compartments per day cud
multiplied by the length of a compartment. Using the same values
for the parameters in the Diekmann/Thieme model, we find: 0.2

10
EPIMUL c* = 2.63
Diekmann/Thieme c* = 2.47. 0.3

The difference between the two values, possibly resulting from 0.4

difference in habitat characterization, seems negligible. In 5 0.5
EPIM U L the habitat is subdivided into discrete squares, whereas
in the present paper the habitat is treated as a continuum. 0.75

1.0
A typical result of EPIMUL is that, contrary to Vanderplank's 1.5

(16) opinion, the daily multiplication factor, equivalent to ySo/i,
has little effect on the wave velocity (4). 0

Figure 3 confirms that, with fixed p and i, -ySo has little effect on
the wave velocity when p/i< 2 and ,ySo> 10. When, however,/S0 1 3 10 30 100 's0
< 10 and/ or p/ i > 2, ySo can have a marked retarding effect on the Fig. 3. Relation betweena= p/i ratio (latency period divided by infectious
wave velocity. Biologically, this effect is understandable; both a period) and gross reproduction -So under various values of scaled wave
high p/i ratio (due to a high p value) and a low multiplication rate velocity c* = ci/a.
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Distribution Theory. Griffin, London. 433 pp.the asymptotic velocity within the time span of the experiments. 7. Kermack, W. D., and McKendrick, A. G. 1927. A contribution to the
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reasonable. 9. Minogue, K. P., and Fry, W. E. 1983. Models for the spread of disease:

Though inoculum plays a role in the model description, Model description. Phytopathology 73:1168-1173.
inoculum is not used per se. Inoculum is described in terms of its 10. Minogue, K. P.,and Fry, W. E. 1983. Modelsforthe spread of disease:
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