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ABSTRACT

Swallow, W. H. 1987, Relative mean squared error and cost considerations in choosing group size for group testing to estimate infection rates and

probabilities of disease transmission. Phytopathology 77:1376-1381.

Virus-vector research often has the goal of estimating some probability
P, which may be an infection rate ora probability of disease transmission by
a single vector. Statisticians have recommended group testing (multiple-
vector-transfer designs) over single-vector-transfer designs for doing this
efficiently. In group testing, vectors or other units are tested in groups,
rather than individually. The statistical argument for group testing has
been based on the superior properties of optimal (meaning minimum mean
squared error) group-testing designs. However, in application, the optimal
design cannot be used or even identified, because to do so requires knowing
beforehand the unknown p, the very probability one is preparing to
estimate. As a workable alternative, using group testing with a group size
(vectors per test plant, pool size per test) presumed to be smaller than the

optimal group size (for minimizing mean squared error with a fixed number
of tests or test plants) has been recommended as a safe way to realize at least
some (unknown) fraction of the benefits of the optimal group-testing
design. A method for choosing that smaller group size has been suggested in
carlier work. This paper provides more detailed information on the extent
of benefits one can actually hope to realize with group testing using smaller-
than-optimal group sizes. It shows that often a large fraction of the benefits
of the optimal design can be attained with a much smaller group size. It
further illustrates how, when costs are taken into account, using a smaller
group size may actually be more cost effective than using the group size that
is optimal for minimizing mean squared error.

Additional key words: aphid vectors, estimating plant resistance, insect vectors, maximum likelihood estimation, virus transmission.

Vector-transfer designs are widely used in studying the spread of
insect-borne diseases, quantifying resistance factors in plants, and
estimating proportions of infective vectors (3,4,6,7). For example,
to quantify resistance in a particular cultivar, an experimenter
might move k vectors (i.e, aphids or leafhoppers) from an infected
source plant to each of N noninfected test plants of this cultivar
and later record the fraction (H) of the N test plants remaining
healthy or, alternatively, the fraction (1 — H)developing symptoms
of disecase. To compare several “treatments” (e.g., recipient test
plant cultivars, virus sources, or vectors), this scheme could be
carried out for each treatment in turn. When k = I, we call the
experimental design a single-vector-transfer design; when k> 1, we
call it a multiple-vector-transfer or group-testing design (with k&
being the size of the group tested together).

Provided the k vectors on each of the N test plants can be
assumed to behave independently, one can for each treatment
estimate its

p = the probability of disease transmission by a single vector,

using the estimator p given by
p=1—HVX

This estimator has a long history of application (4,7), and its
statistical properties have been discussed by a number of authors
(1,2,5,6). As Swallow (5) emphasized, it is essential that treatments
be compared through their ps, not through their raw fractions of
healthy or infected plants (Hs or [1 — H]s), which depend on the
values of k used as well as on the treatments themselves.

Once the data have been collected, calculating p for a particular
treatment is easy; all one needs to know is the fraction of test plants
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remaining healthy (H) and the number of vectors (k) placed on
each of the N test plants. The estimator p does assume that the
same value of k has been used for all N test plants that will be used
to calculate a particular p. However, different values of k (or N)
may have been used for different treatments (different ps) and
perhaps should have been (5). In practice, one may even obtain
several ps for the same treatment, perhaps as replication over time
where the amount of data one can collect at any one time is
constrained by labor requirements, limited availability of vectors
or test plants, or whatever. These ps too can be from data having
different values of N and k.

Designing an experiment to obtain a p involves choosing
appropriate values of N and k, the numbers of test plants and
vectors per test plant, respectively. This is complicated by the fact
that, when k> 1, p is a biased estimator (p overestimates p). The
magnitude of the bias depends greatly on the values of N and k
chosen and on p; the bias may be negligible or huge, depending on
the design selected. Swallow (5) discussed this problem in some
detail and showed the importance of comparing ps from different
possible designs (choices of N and k) through their mean squared
errors (MSEs), not through their variances or standard errors as is
usually and appropriately done with unbiased estimators. The
MSE of the biased estimator p is

MSE(p) = Variance(p) + (Bias[p])’,

which incorporates measures of both the accuracy (bias) and
precision (variance) of the estimator. To have a small MSE, the
estimator must be both accurate (small bias) and precise (small
variance). Work on experimental design for group testing, that is,
on how to select appropriate values of N and k, has focused on how
to choose designs with small MSE(p)s.

In considering the problem of design selection, Swallow (5)
reached three important conclusions: First, in practice, a multiple-
vector-transfer design (k> 1) almost always will be preferable toa



single-vector-transfer design (k = 1). For specified N, the optimal
group-testing design (i.e., value of k that minimizes MSE[]) often
provides an estimator of p with MSE manyfold smaller than would
be realized with the same value of N but with k= 1. The advantage
of group testing is most striking when p is very small, as it is in most
applications. Second, the user must take care in selecting a group-
testing design, as the penalties for a poor choice can be severe.
Specifically, using too large a value of k (how large is too large
depends on N and p) can lead to an estimator with large bias and
thereby greatly inflated MSE. And third, in most practical
applications it is easy to select a group-testing design that, though
not optimal, is both safe (having acceptable, usually negligible,
bias) and an improvement over a single-vector-transfer design. To
determine the optimal value of k for a given N, one must know
beforehand the value of the unknown parameter p that one is
preparing to estimate—clearly an impossible requirement, The
recommended approach, in practice, is to select a value of k using,
in place of the unknown p, a value that one believes, perhaps based
on preliminary or other data, to be an upper bound for p; two
examples illustrating how a researcher might do this are provided
in the following section, and further discussion and more extensive
tables for use in this procedure can be found in (5). The value of k
one selects in this way is expected to be smaller than the optimal
value of k, providing insurance against excessive bias, but it has
been assumed that it will still provide some reasonable (but
unknown) fraction of the gains of the optimal group-testing design
over a single-vector-transfer design.

Thus, although the argument for using group testing rather than
single-vector-transfer designs in most applications has been based
on the greater efficiency (i.e., smaller MSE) of the optimal group-
testing designs (1,2,5,6), in application the optimal design cannot
be used or even identified. Instead, using a value of k presumed to
be smaller than the optimal value is recommended for insurance
against excessive bias, and therefore only a portion of the potential
benefits (MSE reduction) of the optimal group-testing design over
the single-vector-transfer design will be realized. This raises
important questions that need to be addressed. First, what fraction
of the (often huge) MSE reduction of an optimal group-testing
design over the single-vector-transfer design can one hope to
realize in practice when using smaller-than-optimal values of k?
And second, with a view of designing cost-efficient experiments,
can savings in labor and other costs be taken into account as
further reason to use values of k smaller than the values needed to
minimize MSE(p)? This paper addresses these questions in the
belief that the answers will enhance the appeal of group testing to
potential users.

RELATIVE MEAN SQUARED ERRORS
AND STANDARD ERRORS WHEN
USING SMALLER-THAN-OPTIMAL VALUES
OF k VERSUS THE OPTIMAL VALUE, k*

Relative MSE (RMSE) is a convenient measure for comparing
the MSEs of estimates (ps) of the same p that could be obtained
using different values of k with the same value of N, that is, using
different experimental designs. We denote the MSE of p when k
vectors per test plant are used as MSE(p;k), and the MSE of p
when k*, the optimal group size, are used as MSE(p:;k*). Expressed
as a percent, the RMSE obtained with k versus k* vectors per test
plant is

RMSE(k) = [MSE(,b;k)fMSELb;k)] % 100. (1)

Calculated values of RMSE, like those of MSE, depend on Nand p
as well as on k, although, to simplify notation, N and p are not
shown explicitly in equation 1. The notation k125, for example, will
be used to denote the value of k for which RMSE(k)= 125; that is,
ki2s is the value of k for which MSE(p:k) is 25% larger than the
minimum MSE realized with k* for the same values of N and p.
Table 1 gives k*, MSE(p:k*), ki2s, kiso. ka0, kaoo, keoo, and
RMSE(]) for a wide range of combinations of N and p. RMSE(1)
compares the MSE of the single-vector-transfer design (k= 1) with

the MSE of the optimal group-testing design. The table is based on
mean squares calculated for k = I to 25 by 1, and 25 to 50 by 5.
Thus, recorded values of k* greater than 25 are correct to within 5,
except that k* = 50 means only k* = 50, since 50 was the largest
value considered. RMSEs and the values of k associated with
specified RMSEs are therefore approximate for k* = 25, but are
fine for all practical purposes.

Table | shows, for example, that for p = 0.04 and N = 25, the
optimal value of k is k*= 22 for which MSE(p;k*)=0.000131, the
minimum MSE against which one can compare MSEs of ps
obtained with other values of k. If one uses k = 8 (shown as ko in
Table 1), then the MSE of p, MSE(p:8), will be about twice the
minimum MSE (by the definition of k). With k& = 4 (kawo),
MSE(p;4) will be four times the minimum MSE, MSE(p:k*), but
to attain that minimum one would require a group size, k*, which is
(k*/k)=(22/4)= 5.5 times the value k = 4. For the same example,
Table | gives RMSE(1)= 1,175, meaning that MSE(p;1) from the
single-vector-transfer design would be 11.75 times MSE(j;k*)
from the optimal group-testing design.

Table I can be used to support the method suggested by Swallow
(5) and Thompson (6) for choosing a group size (k) in practice
when N is already determined, perhaps by availability of screen
cages or glasshouse space. They recommended using a group size
that would be optimal for a value of p thought to be a reasonable
upper bound for the (unknown) p that was to be estimated. For
example, when N = 25 and the value of the true p is 0.05, the
optimal group size is k*= 18 (from Table 1), but to determine k*=
18 one needs to know that the true p = 0.05. If one could just say,
“I’'m quite certain that p is not larger than 0.10," then one could
enter Table 1 at p. = 0.10 (p. for “entry p™)and N= 25, and find k=
9 (shown there as k*). Returning to the section of Table | for p =
0.05 (the true value of p) and N= 25, one finds that k = 9 is the value
of kiso. Thatis, RMSE(p;9)= 150. Specifying the upper bound for
pasp.=0.10leads to using k= 9 for which MSE(p;9) is 50% larger
than the minimum MSE, MSE(p:k*). For comparison, RMSE(1)
= 951, so using k = 9 as in this example provides most of the
potential gains of group testing over the single-vector-transfer
design.

For a second example, suppose one has decided to use N = 25,
and the true p = 0.03. The optimum group size is given as k* = 30.
Using p. = 0.05 would give k = 18, which is k25 under p = 0.03.
Using p. = 0.10 would give k=9, which is approximately k200 under
p=10.03. And using p . = 0.20 would give k=5, which is ksoo under p
=0.03. Again for comparison, RMSE(I)= 1,539. The closer p. is to
the true value of p, that is, the more tightly one can bound p, the
closer the resulting design (choice of k) will be to the optimal
(minimum MSE) design. But even using an extremely conservative
(safe) upper bound, p. = 0.20, yields a design (value of k) for which
MSE(p:k) is a quarter of that for the single-vector-transfer design
(RMSE = 400 vs. 1,539). Of course, one must understand that the
comparisons of MSEs made in the preceding examples cannot be
made in a Earticular application, since they required knowing p.
Still, they add credibility to the approach recommended by
Swallow (5) and Thompson (6) for selecting group size in practice.

More generally, however, perusing the values of RMSE(1) and
k* shownin Table I leads to two basic observations. First, for fixed
N and p, and especially when p is small, RMSE(1) is likely to be
large. That is, the optimal group-testing design is usually far
superior to the single-vector-transfer design, judged by
comparison of MSE(p)s. This has been noted by many authors
(1,2,5,6) and has been the basis for their recommending group
testing. Second, again especially when p is small, the optimal group
size, k*, may be very large. Thus, the potential gains (MSE
reduction) with group testing are large, but a very large group size
may be needed to realize group testing’s full potential. In many
biological applications, the thought of using such large values of k
may raise serious questions of cost, practicality, and whether the
assumption (for p) that the vectors operate independently can be
justified (5). This suggests investigating the merits of designs that,
although they may realize only a fraction of the benefits of the
optimal group-testing design, will require a group size thatisonlya
fraction of the group size, k*, required for that optimal design.
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Indeed, it begs the question, “Even if we could know k*, would we
want to use such a large group size?”

As rough approximations, k25 = (2/3)k*, kiso = (1/ 2)k*, kaoo =
(1/3)k*, and ksoo = (1/6)k* in Table 1. So, for example, if one
reduces the group size by one third, from k* to (2/3)k*, one
increases MSE(p) by only 25%. The proportional reduction in
group size exceeds the proportional increase in MSE(p).

In considering the effects of increased sample size, we often focus
on the standard error (SE) of an estimator, the square root of its
variance. It's natural to do so, because differences in standard
errors determine differences in widths of confidence intervals, least
significant differences, and so forth, for many familiar estimators.
In the previous section of this paper, I argued that the biased
estimator p should be evaluated through its MSE, not its variance,
and, accordingly, Table | is based on calculated MSEs. In fact,
however, for the optimal group-testing designs of Table I, the
MSE is approximately 1% squared bias and 99% variance (see
Table 1 of Swallow [5]). Designs using smaller group sizes than
that of the optimal design (for the same N and p) have even smaller
biases. The group-testing designs that were disqualified for having
serious bias (and, thereby, large MSE), and that therefore do not
appearin Table 1, all use larger-than-optimal group size. Thus, the
MSE(p)s in Table | are essentially the variances of those ps, and

the square roots of those MSE(p)s are approximate standard
errors.

Byanalogy to equation I, relative standard error (RSE) is taken
to be the ratio of the standard error of p based on group size k
(SE[p:k]) to the standard error of p from the optimal group-
testing design (SE[p;k*]) for the same Nand p and isexpressed asa
percent; to obtain the RSE one can take the square root of
RMSE/ 100 and multiply the result by 100. Converting from
RMSEs to RSEs shows that the group sizes designated kizs, k150,
kaoo, kaoo, and keoo are those that have relative standard errors
approximately equal to 110, 120, 140, 200, and 300, respectively. If
the approximations given two paragraphs above are stated in
terms of relative standard errors, rather than RMSEs, they
indicate that reducing group size by one third from k* to (2/3)k*
increases the standard error of p by approximately 10%, reducing
from k* to (1/2)k* increases the SE by 20%, reducing from k* to
(1/3)k* increases the SE by 40%, and reducing from k* to (1/6)k*
increases the SE by 1009% (that is, doubles it). Thus, when the
quality of p is judged by its approximate standard error rather than
its MSE, it is even more striking that proportional reduction in
group size from k* exceeds the proportional loss in quality of p.
This too makes it tempting to consider group-testing designs using
smaller-than-optimal group size. And the case for using smaller-

TABLE I. Opt‘imal group size or number of vectors per plant (k*) to use in estimating infection rate or probability (p) of disease transmission by a single
vector f‘or specified numbers of tests or test plants (N), the mean squared error [MSE(p:k*)] of the estimator of p using & *, the relative mean squared error
(RMSE[1]= 100 X MSE[p; 1]/ MSE[/:k*]) using k = | versus k*, and values of k [k12s, k5o, k200, koo, keoo] having relative mean squared errors 125, 150,

200, 400, and 9009% of MSE(f:k*)

N

P 10 15 20 25 30 40 50 60 80 100 200

0.01 MSE(p:k*)  0.000046 0.000021 0.000014 0.000011 0.000009 0.000007 0.000005 0.000004 0.000003 0.000003 0.000001
k* 35 50 50 50 50 50 50 50 50 50 50
ks 23 35 40 40 40 40 40 40 40 40 40
kiso 18 30 30 30 30 30 30 30 30 30 30
k200 13 19 21 21 21 21 22 22 22 22 22
ko0 7 9 10 10 10 10 10 10 10 1 11
Koo 3 4 5 5 5 5 5 5 5 5 5

RMSE(1) 2148 3165 3450 3538

3,594 3,664 3,705 3,733 3,767 3,787 3,828

0.02 MSE(p:k*)  0.000162 0.000078 0.000048 0.000035 0.000027 0.000019 0.000015 0.000012  0.000009 0.000007 0.000003
k* 19 30 35 40 45 50 50 50 50 50 50
kias 13 19 23 30 30 35 35 35 35 35 35
kiso 1 15 18 20 22 24 24 24 25 25 25
kaoo 8 11 13 14 15 16 17 17 17 17 18
koo 4 5 6 7 7 8 8 8 8 8 8
koo 2 2 3 3 3 4 4 4 4 4 4
RMSE(1) 1,210 1,674 2,036 2,264 2,434 2,623 2,686 2,727 2977 2,806 2,865
0.03 MSE(p:k*)  0.000337 0.000164 0.000104 0.000076 0.000059 0.000041 0.000031 0.000025 0.000018 0.000015 0.000007
k* 14 20 25 30 30 35 40 45 45 45 50
kizs 10 13 16 18 19 21 23 23 24 24 25
kiso 8 11 13 14 15 16 17 18 18 18 19
k200 6 8 9 10 10 11 12 12 12 13 13
Koo 3 4 4 5 5 5 6 6 6 6 6
koo | 2 2 2 2 3 3 3 3 3 3
RMSE (1) 863 1,181 1,396 1,539 1,635 1,774 1,862 1912 1,970 2,003 2,080
0.04 MSE(p:k*)  0.000565 0.000281 0.000180 0.000131 0.000102 0.000072 0.000055 0.000045 0.000032 0.000026 0.000012
k* 11 16 19 22 25 30 30 35 35 35 35
ks 8 10 12 14 15 16 17 17 18 18 19
kiso 6 8 10 11 11 12 13 13 14 14 14
k200 4 6 7 8 8 9 9 9 9 10 10
koo 2 3 3 4 4 4 4 4 4 5 5
kson | 2 2 2 2 2 2 2 2 2 2
RMSE(l) 680 911 1,068 1,175 1,252 1,342 1,400 1,432 1,479 1,506 1,558
0.05 MSE(p:k*)  0.000842 0.000424 0.000274 0.000200 0.000157 0.000110 0.000084 0.000069 0.000050 0.000040 0.000019
k* 9 13 16 18 20 23 25 25 25 30 30
kizs 6 9 10 11 12 13 14 14 14 15 15
kiso G 7 8 9 9 10 10 11 11 11 12
koo 4 5 6 6 7 7 7 7 8 8 8
Kaoo 2 2 k! 3 3 3 4 4 4 4 4
koo 1 1 1 2 2 2 2 2 2 2 2
RMSE(1) 564 747 868 951 1,009 1,083 1,125 1,150 1,179 1,202 1,249
(CONTINUED)
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than-optimal group size may be even stronger when costs are taken
into account, as illustrated in the following section.

MINIMIZING COST PER UNIT OF INFORMATION

Although the literature on multiple-vector-transfer designs has
focused on choosing designs to minimize MSE(p), one might wish
to explicitly introduce cost considerations, too, and redefine what
one means by “optimal™ design. In that case, one’s goal might shift
from minimizing MSE(p) to minimizing cost per unit of
information or, equivalently, maximizing information per unit of
cost,

In experimental design, “information™ is often defined to be the
reciprocal of variance. As noted in the preceding section, for the
minimum-MSE group-testing designs (using k*) of Table | or
designs using values of k smaller than k* with the same Nand p, the
MSEs shown are essentially the variances of ps from those designs.
Thus, forany of the designs in Table 1, the reciprocal of the MSE is
approximately the reciprocal of the variance, and will be used as

our measure of information. For those designs,

cost per unit of information = cost/(1/ MSE)
= cost X MSE

is a reasonable approximation.

One might view the cost of a vector-transfer design as coming
from two components: C;, the cost of each of the N tests, and C,,
the cost of each of the N X k vectors required. The kinds of costs
entering into C; might include costs of screen cage or glasshouse
space for test plants during the experiment, costs of growing or
obtaining the test plants, and costs of laboratory tests to finally
classify test plants as healthy or infected. C, absorbs all costs that
are independent of k. Costs contributing to C; might include costs
of rearing or otherwise obtaining vectors, and costs of collecting,
handling, and transferring vectors, including labor. The total cost
would then be

cost=NXC + NXkXC,.

Table | cont.
N
P 10 15 20 25 30 40 50 60 80 100 200
0.06 MSE(p:k*)  0.001158 0.000592 0.000385 0.000282 0.000222 0.000156 0.000120 0.000098 0.000071 0.000056  0.000027
k* 8 11 13 15 17 19 21 22 23 23 24
kizs 6 7 9 10 10 1 11 12 12 12 13
kiso 5 6 7 T 8 8 9 9 9 9 10
k200 3 4 5 5 6 6 6 6 6 6 7
Koo 2 2 2 3 3 3 3 3 3 3 3
koo | 1 | | 1 2 2 2 2 2 2
RMSE(1) 487 635 732 799 847 905 940 961 989 1,006 1,041
0.08 MSE(:k%)  0.001922 0.001002  0.000656 0.000484 0.000382 0.000269 0.000208 0.000170 0.000124 0.000097  0.000047
k* 6 9 10 12 13 15 16 16 17 17 18
ks 4 6 7 7 8 8 9 9 9 9 10
kiso 4 5 5 6 6 6 7 7 7 7 7
k00 3 3 4 4 4 5 5 5 5 5 S
koo | 2 2 2 2 2 2 2 2 2 3
kooo | | 1 | | | | | | 1
RMSE(1) 383 490 561 609 642 683 707 724 744 756 782
0.10 MSE(A:k*)  0.002807 0.001482 0.000987 0.000732 0.000579 0.000409 0.000317 0.000258 0.000189 0.000149 0.000072
k* 5 7 8 9 10 12 12 13 13 14 14
ks 4 5 5 6 6 7 7 7 7 7 8
kl!hl 3 4 4 5 5 ] 5 5 6 6 6
ko0 2 3 3 3 3 4 L 4 4 4 4
kaoo | 2 2 2 2 2 2 2 2 2 2
kaoo 1 | 1 | | I | | I |
RMSE(1) 321 405 456 492 518 550 568 581 596 606 626
0.15 MSE(f:k*)  0.005409 0.002976 0.002014 0.001516 0.001202 0.000858 0.000665 0.000544 0.000398 0.0003 14 0.000152
k* 4 5 6 6 7 8 8 8 9 9 9
kias 3 3 4 4 4 5 5 5 5 5 5
kiso 2 3 3 3 3 4 4 4 4 4 4
kaoo 2 2 2 2 2 3 3 i 3 3 3
kaoo 1 | l | 1 | 1 | 2 2 2
kﬂH][l ase s P . ] I ]
RMSE(1) 236 286 317 337 353 372 383 390 400 407 419
0.20 MSE(f:k*)  0.008356 0.004764 0.003284 0.002459 0.001975 0.001416 0.001100 0.000901 0.000662 0.000523 0.000253
k* 3 4 4 5 5 6 6 6 6 7 7
kias 2 3 3 3 3 3 4 4 4 4 4
kiso 2 2 2 3 3 3 3 3 3 3 3
kaoo 1 2 2 2 2 2 2 2 2 2 2
kaoo 4 | | 1 | 1 | | | | 1
koo i
RMSE(I) 192 224 244 260 270 283 291 296 302 306 316
0.25 MSE(p:k*)  0.012089 0.006652 0.004735 0.003514 0.002831 0.002056 0.001597 0.001306 0.000959 0.000757 0.00370
k* 3 3 3 4 4 4 5 5 5 5 5
kias 2 2 2 3 3 3 3 3 3 3 3
kiso 2 2 2 2 2 2 2 2 2 2 2
koo 1 l 1 2 2 2 2 2 2 2 2
kaoo ¥ 1 | 1 I | I l |
RMSE(1) 155 188 198 214 221 228 235 239 244 248 254
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One could consider more complicated ways to account for costs,
but that isn’t necessary for what follows below. What matters is
that one incorporate some measure of the relative costs of a test
(plant) and of a vector.

In practice, costs generally increase with increased k for a given
N. This, together with the diminishing gains (MSE or SE
reduction) with larger k noted in the previous section, means that
values of k smaller than k* may be most cost effective, that is, may
minimize cost per unit of information. Of course, for any given N
and p, values of k larger than k* cannot be cost effective and need
not be considered; they will yield less information (larger MSE)
than will k* at greater cost.

Figure 1 illustrates the relationship between costs and cost-
effective group size for the case wherein N= 25 and p = 0.05. For
this case, k*= 18 (from Table 1), so only group sizes (values of k) to
18 are of interest and shown on the horizontal axis. Cost per unit of
information, calculated as

cost per unit of information = (N X C; + N X k X C;) X MSE, (2)

is shown on the vertical axis. The value of MSE in equation 2
depends on N, k, and p. For specified N (N = 25 here), finding the
value of k that minimizes cost per unit of information of equation 2
is equivalent to finding the value that minimizes

(Cy + kX Cy) X MSE,
or

(1 + kX [Cy/Ci]) X MSE.

In other words, the value of k that minimizes cost per unit of
information is determined by C; and C: only through the ratio
C>/Cy. Thus, one may as well set C; = | and let C; = C;/ C; take on
several different values for comparison. In that case, taking C; =
C,/Cy=0.05, say, means that the cost of a vector is taken to be 5%
of the cost of a test; other values of C; can be interpreted similarly.
Ilustrating the calculation of cost per unit of information: for N=
25,p=0.05,C,=1,and C;= C;/C,; =0.05, equation 2 gives the cost
per unit of information when using groups of size k* = 18 to be ([25
X ])+[25X 18X 0.05]) % 0.000200 = 0.0095, as plotted on Figure 1.
The value MSE= 0.000200 is given in Table 1 as MSE(p;k*) for N
=25and p=0.05. If, instead, C; = 0.10 and one uses k= 6, the cost
per unit of information will be approximately ([25X 17X [25X 6X
0.10]) X 0.000400 = 0.016. The value MSE = 0.000400 in this
calculation is obtained from Table | by noting that the value k= 6
is shown as kaoo, and thus MSE(p;6) = 2 X MSE(p;k*) = 2 X
0.000200 = 0.000400 (approximately). The values of cost per unit
of information actually used in plotting Figure | are exact, being
based on more complete tables than Table 1.

0.87+ \
Q.86

@.83+

a.82-

COST PER UNIT INFORMATION
[
®
S
i

Fig 1. Cost per unit of information in estimating an infection rate or
probability (p) of disease transmission by a single vector, versus the number
of vectors (k) used on each of N= 25 test plants, when p= 0.05, the cost per
test plantis C, = |, and the cost per vectoris C; =0, 0.05,0.10,0.25, or 0.50.
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Figure | shows cost per unit of information plotted against k for
C, =l and C: =0, 0.05, 0.10, 0.25, and 0.50. Each value of C; =
C:/C; determines a different curve, and the value of k that
minimizes cost per unit of information isindicated along that curve
by a small arrow. Provided vectors are free (C: = 0), k* is always
most cost-effective (k* = 18 here). But as vectors become more
costly, smaller and smaller values of k become preferable. For C; =
0.05 (the cost of a vector being 5% of the cost of a test plant), k= 15
minimizes cost per unit of information. For C; = 0.10, k = 12
minimizes; for C; = 0.25, k= 9 minimizes; and for C;=0.50, k=7
minimizes cost per unit of information. As a practical matter, even
smaller values of k nearly minimize cost per unit of information.
For C: = 0, k* = 18, and k = 10 differ little in cost per unit of
information. For C; = 0.05, the curve is quite flat down to k = 8,
and for C; = 0.10, down to k = 6.

The case wherein N = 25 and p = 0.05 is shown (Fig. 1) is a
typical example. Similar figures (not shown) were drawn for all
nine combinations of N= 10, 25, or 50 with p=0.01, 0.05, or 0.10.
The general impression from each of these figures is the same,
although the details depend on N and p. For fixed N, the smaller
the value of p, the more exaggerated is the flatness evident in the
curves (as discussed in the final three sentences of the previous
paragraph). For fixed p, as N is made larger, the minima (marked
by arrows in Fig. 1) become smaller fractions of k*, and the curves
rise more steeply to the right of those minima.

The fact that, in practice, it may be difficult to state costs
precisely doesn't void the value of the message in Figure | or
similar figures. The point s that, for given Nand p, using a value of
k smaller than the k* from the optimal (meaning minimum MSE)
design may make sense from the standpoint of cost effectiveness.
The value k* is optimal for achieving the statistical goal of MSE
minimization with specified N but without regard for cost
considerations.

DISCUSSION

Although this paper has discussed group testing largely in the
context of vector-transfer designs, the topic is much broader.
Group testing is often useful, for example, in batch serological
testing where samples from k plants (or blood from & individuals,
or whatever) can be homogenized and tested together. The
infection rate in a field (or other population) can then be estimated
from Nlaboratory tests, each done ona pool of size k. The problem
is the same—how to choose a suitable value for k. The points made
here and in (5) are as applicable to batch testing as to vector-
transfer designs.

None of the above resolves the fundamental difficulty in
choosinga group-testing design, namely, that to choose an optimal
design one must know in advance the true value of the p that the
proposed experiment is to estimate. For the case where N is taken
to be fixed and the goal is to choose k to minimize MSE(p), this
dilemma led Swallow (5) and Thompson (6) to recommend the
approach to design selection discussed and illustrated above. Their
procedure is expected to lead to using a group size (k) smaller than
the value k* that is optimal in the sense that it minimizes the mean
squared error of p. However, values of k larger than k* are
avoided, which is essential because using values larger than k* can
lead to badly biased estimates. And using smaller group sizes
makes the important assumption that vectors operate
independently more plausible in many applications.

This paper provides additional support for the method
recommended by Swallow (5) and Thompson (6) for choosing k. It
demonstrates that most of the advantage (in MSE reduction) of
group-testing or multiple-vector-transfer designs over single-
vector-transfer designs can indeed be realized with group sizes
substantially smaller than &*. It also illustrates how, when the cost
of increasing group size is not negligible, using group sizes smaller
than k* may even be more cost-effective than using k* itself. It is
hoped that, with this information, prospective users will be further
encouraged to use group testing rather than much less powerful
single-vector-transfer designs whenever group testing is
appropriate and feasible.
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