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ABSTRACT

Schuh, W., Jeger, M. J., and Frederiksen, R. A. 1987. The influence of soil environment on the incidence of sorghum downy mildew: A principal component

analysis. Phytopathology 77:128-131.

The influence of weather variables on disease incidence of sorghum
downy mildew at four locations and over 4 yr was investigated by using
principal component analysis. Two principal components, derived from
the weather data only and representing wet and dry soil conditions, were
used as independent variates in regression analysis and explained 419% of

the variation in disease incidence. Regression of the disease incidence on
the original soil environment variables did not provide significant
equations. Results of this analysis could be used to classify sorghum-
growing areas, based solely on weather, for their propensity to downy
mildew.

Sorghum downy mildew, caused by Peronosclerospora sorghi
(Weston & Uppal) C. G. Shaw (12,13), is endemic in the Coastal
Bend area of south Texas (3). Several major epidemics have been
reported (4). Seasonal fluctuations in disease incidence are likely to
be caused by weather variations, resulting in soil conditions
favorable or unfavorable for infection and disease expression. Soil
temperature and soil moisture have a pronounced effect on the
incidence of sorghum downy mildew (1,6), but quantitative
relationships between soil environment conditions and disease are
not well understood.

The purpose of this study was to determine the influence of soil
environment variables on the incidence of sorghum downy mildew
in the field and compare these results with those obtained under
controlled conditions (11). The intention is to use this information
to classify sorghum-growing areas in terms of disease propensity
and to recommend planting periods based solely on records of soil
environment that are unfavorable for subsequent disease
development.
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MATERIALS AND METHODS

A CR21 Micrologger (Campbell Scientific, Inc., Logan, UT)
was used to record soil moisture (bars) and soil temperature (C).
These variables were selected for further investigation based on
results of controlled condition experiments (11). Soil moisture was
determined using a Model CEL-WFD soil moisture block
(Campbell Scientific, Inc.). Soil temperature was recorded using a
101 Thermistor (Campbell Scientific, Inc.). The soil environment
variables were recorded for the years 1982-1985 at four locations
where sorghum downy mildew is endemic (2): Orange Grove (O),
Beeville (B), Laward (L), and Robstown (R) in the Texas Coastal
Bend. Test plots at each location had a documented history of
sorghum downy mildew. The daily minimum and maximum soil
temperatures (24 readings per day) and mean daily soil moisture
(average of 24 readings per day) were computed from the logged
data. Variables were recorded and computed for 4 wk after each
planting date. From these recorded variables, seven environmental
variables were derived, which subsequently formed the basis fora
principal component analysis: 1) number of days with wet soil in
week | (above 1/3 bar) (S1); 2) number of days with wet soil in
week 1-2(S2); 3) number of days with wet soil in week 1-3 (5S3); 4)
number of days with dry soil (below —1 bar) in week 1-3 (D3); §)
number of days with a minimum soil temperature below 20 C in
week 1-3 (B3); 6) number of days with minimum or maximum soil



temperature between 20—30 C in week 1-3 (B23); and 7) number of
days with maximum soil temperature above 30 Cin week 1-3 (A3).

The incidence of sorghum downy mildew at each location in
each year was assessed by using the disease reaction of the
susceptible cultivar ATX399 X RTX2536. Plants were rated as
either healthy or systemically infected. By using this classification
system, the percent diseased plants was computed for each 6-m
row. At each location, a minimum of 10 replication (6-m rows),
which were uniformly distributed through the field, were used to
compute the average disease incidence. At the site/year
combination R831 and R832, five replications were evaluated. The
average number of plants per 6-m row was 60. Principal
component analysis was performed with the SAS Princomp
procedure (9). Principal component analysis was used because the
original variables were highly correlated (Table 1). Principal
component analysis produces a set of new variables (linear
combinations of the original variables) that are independent of
each other and ranked according to the amount of variation
accounted for. For each principal component, a score can be
computed for each site X year combination included in the
analysis. Full details of the technique are given by Kendall (5),
Madden and Pennypacker (7), and Stynes and Veitch (14-17). The
principal component scores for each site X year combination were
then used as independent variates in a regression analysis, using the
SAS GLM procedure (9), with disease incidence the dependent
variable. Additionally, disease incidence was regressed on S1, S2,
S3, D3, B3, B23, and A3, the originally derived variables. A total of

TABLE 1. Correlations between the seven weather variables used in the
principal component analysis

Variable" Sl S2 S3 D3 B2 W23 A3
Sl 1.00 0.92 0.83 —0.44 0.18 0.18 0.38
S2 0.92 1.00 095 —0.50 0.06 0.01 0.18
S3 0.83 0.95 .00 —0.49 0.08 —0.01 0.14
D3 —0.44 —0.50 -—0.49 1.00 0.00 0.03 —0.11
B2 0.01 0.06 0.08 0.00 .00 -0.79 -0.25
w23 0.18 0.01 -0.01 003 -0.79 1.00 0.45
A3 0.38 0.19 0.14 —0.11 -0.25 0.45 1.00

*S1= Number of days with saturated soil in week 1. S2 = Number of days
with saturated soil in week 1-2. S3 = Number of days with saturated soil in
week 1-3. B2= Number of days with soil temperature below 20 C in week
1-3. B23 = Number of days with soil temperature between 20-30 C in
week 1-3. A3 = Number of days with soil temperature above 30C in week
1-3. D3 = Number of days with soil moisture below —1 bar in week 1-3.

TABLE 2. Values for the seven weather parameters at four locations and 4
yr used in the principal components analysis

Locations

and year' s’ S2 S3 D3 B2 w23 A3
B85 4 8 15 0 10 16 2
085 1 6 13 2 11 12 0
B84 0 0 0 9 9 19 1
084 0 0 0 21 11 15 0
1.84 0 3 3 10 14 14 0
B83.1° 5 12 19 0 14 6 0
B83.2° T 14 18 0 12 14 0
B83.3° 7 10 10 0 9 17 2
R83.1° 6 12 19 0 14 14 0
R83.2° 0 4 5 0 14 8 0
083 0 0 1 2 21 4 0
L83 | 3 3 0 15 11 0
B82 1 1 1 1 8 15 0
082 0 2 3 0 1 19 0
*Locationsand year. B= Beeville, 0= Orange Grove, L= Laward,and R=

Robstown.

"S| = Number of days with saturated soil in week 1. $2 = Number of days
with saturated soil in week 1-2. S3= Number of days with saturated soil in
week 1-3. B2= Number of days with soil temperature below 20 C in week
1=-3. B23 = Number of days with soil temperature between 20-30 C in week
1-3. A3 = Number of days with soil temperature above 30 C in week 1-3.
D3 = Number of days with soil moisture below —1 bar in week 1-3.

“Staggered planting dates.

14 data sets, each consisting of the disease incidence and values for
the seven variables, formed the basis for the statistical analysis.

RESULTS

The untransformed values for the seven weather variables (Table
2) were used to compute seven principal components (Table 3).
Principal component 1 (PCIl) had an eigenvalue of 3.24 and
explained 469% of the variation generated by the derived variables.
The eigenvalues and the percentage of the total variation
accounted for were 2.04 and 29%, 0.76 and 11%, 0.66 and 9%, 0.18
and 3%, 0.11 and 1%, and 0.01 and 1% for principal components
2-7 successively.

Principal components 1-4 explained about 95% of the total
variation and were selected as independent variables for the
regressions analysis with disease incidence as the dependent
variable.

Because principal components are a linear combination of all
variables entered into the analysis, the corresponding values in the
eigenvectors for each variable were used to interpret the principal
components. Interpretation was based on the absolute value of
each variate in the eigenvector. Principal component | was
dominated by high positive weights on S1, 52, S3, and to a smaller
extent negative weights for D3 (Table 4). Principal component |
can be interpreted as representing the effects of wet soil conditions.
A site X year combination that has wet soils will result in a high
positive score on this principal component; conversely, a site X
year combination that is dry will result in a low or negative score.

Principal component 2 was dominated by high positive weights
for B23 and to a lesser extent A3, and high negative weight for B2.
This principal component represents the effect of both favorable
and unfavorable conditions for disease incidence. Therefore,
scores on this principal component will influence disease
incidences less because of counterbalancing effects, and made
interpretation difficult.

Principal component 3 was dominated by high positive weights

TABLE 3. The principal components, as computed through the seven
weather variables

Principal

component (PC)" Eigenvalue Proportion” Cumulative’
PCI* 3.24 0.46 0.46
pPC2 2.04 0.29 0.75
PC3 0.76 0.11 0.86
PC4 0.66 0.09 0.95
PC5 0.18 0.03 0.98
PC6 0.11 0.01 0.99
PC7 0.01 0.01 1.00

* Principal components 1-7.

"Proportion of variation explained in model.
“Cumulative proportion of variation explained in model.

TABLE 4. The eigenvector

variation as related to the seven weather

variables
Eigenvectors

Variable" PCI®  PC2 PC3 PC4 PC5 PC6 PC7
Sl 0.53 0.02 0.17 0.17 036 —0.57 —046
S2 0.54 —0.11 —0.02 0.24 -=0.11 -0.14 0.78
53 0.52 —0.13  —0.06 0.24  —0.31 0.64 —0.38
D3 —0.34 0.08 0.52 0.77 —0.12 —0.02 0.00
B2 —0.01 —-0.61 —044 —0.13 0.54 0.31 0.11
B23 0.09 0.65 —0.10 0.14 0.61 0.38 0.13
A3 0.21 0.40 071 —0.46 —0.28 0.05 0.04

"S1 = Number of days with saturated soil in week 1. $2 = Number of days
with saturated soil in week 1-2. S3= Number of days with saturated soil in
week 1-3. B2= Number of days with soil temperature below 20 C in week
1-3. B23= Number of days with soil temperature between 20-30 C in week
1=3. A3 = Number of days with soil temperature above 30 C in week 1-3.
D3 = Number of davs with soil moisture below —1 bar in week 1-3.

"Principal components 1-7.
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for D3, B2, and A3. This principal component represents the effect
of soil conditions that are disease suppressive, either too cool (<
20 C)and dry (< —1.0 bar) or too warm (> 30 C) and dry. Either or
both effects will lead to high positive scores on PC 3.

Finally, principal component 4 was dominated by high positive
weights on D3, and to a lesser degree, a negative weight on A3. This
principal component represents the variation caused by warm or
dry soils. A site X year combination that has dry soils will resultina
high positive score of this principal component; alternatively,
warm soils will result in a negative score of this principal
component. Variation accounted for by the remaining principal
components was marginal (about 4%). Thus the dimensionality of
the weather variables was effectively reduced from seven to four.
Only the scores of PC1-PC4 were entered into the regression of the
principal components on the disease incidence (Table 5).

When a forward selection procedure (9) for the dependent
variable infection was used, the model containing the independent
variables PCl and PC4 gave the best prediction of disease
incidence (P = 0.05); this model explained about 41% of the
variation in disease incidence. When all variables (PC1-PC4) were
entered into the regression model, the R value rose to 0.50, as
could be expected, but the validity of the model decreased (P =
0.07).

When single PC scores were regressed on the disease incidence,
PCI had the highest R’ value of 0.29, followed by PC4 and with R®
value of 0.11 and PC3 with an R’ value of 0.09.

Disease incidence was regressed on the original derived variables
using stepwise regression. No statistically significant model, either
with multiple or single variables, was obtained. The most
significant model included D3 as a single variable (P = 0.29).

Site X year scores on principal component | were plotted against
the corresponding scores on principal component 4; no distinct
trend was found, although variation was mostly higher within
years than with location.

DISCUSSION

The influence of soil moisture and soil temperature on the
incidence of sorghum downy mildew has been investigated by
several researchers. Balasubramanian (1) described an optimum
temperature of 26.3 C with a considerable reduction in disease
incidence when the soil temperature was below 21.3 C. He found
soil moisture in the range of 44-47%, (available soil moisture) to be
optimal for disease incidence; higher soil moistures (77-79%
available soil moisture) were detrimental. Pratt (8) reported a
failure of oospores to germinate when the soil was watered daily for
21 days after planting. Kenneth (6) determined in Wisconsin-style
temperature tanks that the optimum temperature was between

TABLE 5. Disease incidence and principal component scores (PCI-PC4)
for cach location and year combination

; , Principz ent scores’
Location DI rincipal component sco

and year" (%) PC1 PC2 PC3 PC4
BES 8 1.00 0.93 1.24 =1.00
O8S 2 0.08 -0.20 —0.71 0.25
B84 9 —0.87 1.30 0.75 =0.10
084 6 —1.45 0.50 1.14 2.32
L84 18 =0.91 -0.95 0.62 0.43
B83.1 12 1.08 =119 —0.24 0.53
B&3.2 1 1.45 =0.30 -0.50 1.12
B83.3 0 1.25 1.16 1.36 =0.79
R83.1 9 1.26 —0.47 -0.35 0.89
R83.2 8 —=0.43 -0.74 —0.46 —0.83
083 18 —0.93 —1.63 0.66 =1:33
.83 15 =0.43 -0.52 —0.32 —0.83
B82 28 =0.61 0.57 —1.07 —(.48
082 19 -0.50 1.54 -3 =0.17

*Locations and year. B= Beeville, O= Orange Grove, L= Laward,and R=
Robstown.

"Disease incidence (average of 10 replications).

“Scores for principal components 1-4. Scores were rounded off to two digits.
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24-29 Cforinfection. He observed no infection below 20 C. Schuh
etal(11)determined the optimum soil temperature for infection to
be 27 C, with no downy mildew observed below 20 Cand above 30
C. Saturated soils and dry soils were both suppressive for disease.

The principal component analysis was executed using the seven
derived variables. The best regression model contained the
principal components 1 and 4 as independent variates and
explained about 41% in the variation of disease incidence. This
degree of predictive power is satisfactory when taking into
consideration the fact that the model does not contain variables
such as sand content and inoculum density, which have a
documented influence on the disease incidence levels (11). Tedious
isolation procedures exclude the assessment of inoculum density in
a commercial production situation (10). These findings
demonstrate the strong influence of soil environment on disease
incidence and explain fluctuations between years. The principal
components used in the regression model represent variation in soil
conditions unfavorable for sorghum downy mildew. PCI
represents the variation caused by wet soils, and to a lesser extent,
by cold soils. PC4 depicts variation caused by dry soils. Both
conditions, wet and dry, have a disease suppressive effect, as has
been shown in field and greenhouse trials (2,6,11). Even though
PC4 only had a P-value of 0.17, it was included in the model for
two reasons. First, the model P-value was 0.05 and secondly, the
suppressive effect of dry soils was proven in controlled condition
experiments. The high P-value could have been caused by the fact
that dry soil conditions were only found during the 1984 growing
season.

PC3 represents the influence of soils that are cold (<20 C) or
warm (=30 C). Even though both conditions had a disease
suppressive effect in experiments under controlled conditions (11),
the principal component was not significant (P = 0.22) in the
regression analysis. This could be explained by the way
temperature data were obtained, i.e., the use of minimum and
maximum temperatures for each day. These temperatures were
present in the soil for only a small number of hours per day. Thus,
these conditions did not persist long enough in the soil to have a
significant influence as compared with the controlled condition
experiments, where these temperatures were maintained for 24 hr
each day.

The failure to obtain statistically significant regression models
with the original variables demonstrates the usefulness of the
principal component analysis when dealing with sets of variables
thatare highly intercorrelated. By reducing the dimensionality ina
set of variables, principal component analysis can also be used to
reduce the number of variables entered into regression models,
which is especially important when weather variables are only a
subset of all the variables used (14,16,17). Moreover, the
preliminary screening for independent variables based on
previously obtained information is a much better procedure than
simply using all measured variables in the hope that a model of
significance will emerge. Often the latter procedure produces
correlations that, although high, are illogical and spurious.

The variation of the PC scores is greater between years than in
between locations. This is because the weather stations were
relatively close together (about 160 km) and that, in general, the
area is subjected to the same average weather conditions.

The results obtained in this study could be used to classify areas
according to their disease potential, when average weather
conditions around planting time are known. They help explain
why sorghum downy mildew is endemic in the Coastal Bend area,
where favorable weather conditions for disease expression are
fairly common during planting time.
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