Evidence for a Latent Viruslike Agent in Cassava

C. J. Gabriel, R. Walsh, and B. L. Nolt

The first and second authors are research plant pathologist and plant pathologist, respectively, at the U. S. Plant Introduction Station, Glenn Dale, MD 20769, and the third author is cassava virologist, Centro Internacional de Agricultura Tropical (CIAT), Apartado Aereo 6713, Cali, Colombia.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the U. S. Department of Agriculture and does not imply approval to the exclusion of other products that may also be suitable.

Accepted for publication 19 June 1986.

ABSTRACT


Several species of double-stranded RNA (dsRNA) were found to occur in the cassava (Manihot esculenta) clone Secundina, which was thought to be virus-free. A large dsRNA molecule (6.6 x 10^6 M, relative molecular mass) (L-dsRNA) was shown to be graft, but not mechanically transmitted and occurred primarily in a nuclear-rich fraction isolated from dsRNA containing Secundina plants. Virus-like particles were not detected in plants containing the L-dsRNA using a variety of purification procedures.

L-dsRNA was also found in two non-Secundina M. esculenta introductions. Smaller dsRNAs (S-dsRNAs), ranging mainly between 0.61 and 0.41 x 10^6 M, were also detected in some Secundina plants containing the L-dsRNA. The S-dsRNAs were not transmissible by mechanical inoculation or grafting. All dsRNAs could be eliminated by meristem-tip culture of infected plants. dsRNA analysis is recommended for indexing cassava for this latent viruslike agent.

Cassava (Manihot esculenta Crantz) is a vegetatively propagated crop commonly grown in the tropics. Many virus-like diseases of cassava have been reported to occur in Latin America but the causal agents for most of these diseases remain unknown (13). Cassava mosaic mosaic virus (CCMV) (3) (a potexvirus) is the only Latin American cassava virus that has been characterized. As a result, virus-specific antisera are not available so virus indexing programs are often based on mechanical and graft inoculations to indicator plants. Double-stranded RNA (dsRNA) analysis could be used to increase the speed and accuracy of cassava virus detection unique dsRNA species could be associated with diseased plants. dsRNA analysis has been used to suggest the viral etiology of several virus-like diseases without the detection of virus particles (7.9, 15). This allows for possible disease diagnosis without bioassay or serology.

To index cassava virus-like diseases using dsRNA analysis, we first needed to determine if dsRNA species occurred in plants that were thought to be virus-free. In this report, we describe a latent virus-like agent that was present in the cassava virus indicator clone Secundina (13). Detection of the agent was rapid and reliable using established dsRNA procedures.

MATERIALS AND METHODS

Woody stem cuttings of Secundina were provided by the Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia. Cuttings of Manihot websterae Rogers & Appan were obtained from the Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Juarez, Mexico. CCMV-infected cuttings of M. esculenta were obtained from Ingreso Agricultura Druetta, Formosa, Argentina. CCMV-infected Secundina clones were produced by grafting CCMV-infected buds onto CCMV-free Secundina. Cuttings were rooted under mist and transplanted into 4-inch pots. Cassava meristem-tips were cultured as described by Kartha et al (11). Lettuce necrotic yellows virus (LNY) and sochus yellow net virus (SYNV) were obtained from H-T. Hsu, American Type Culture Collection. All cassava plants were grown under quarantine conditions at the U. S. Plant Introduction Station at Glenn Dale, MD.

**D**sRNA purification and gel electrophoresis. DsRNA was extracted from 0.5 to 1.0 g of leaf tissue using the method of Jordan et al (10). DsRNA was fractionated by gel electrophoresis using 5% polyacrylamide (acrylamide:bis-acrylamide ratio was 40:1) slab gels (16 x 18 x 0.15 cm, 20 mA for 18 hr) or horizontal, submerged, 1% agarose gels (11 x 14 x 1.5 cm, 150 mA for 4 hr) in 40 mM Tris, 20 mM sodium acetate, 1 mM EDTA, pH 7.8. Gels were stained with 100 ng/ml of ethidium bromide for 30 min and destained in distilled water for 15 min.

Enzymatic digestions were done as in Gildow et al (6) for DNsase I and RNase A (Sigma Chemical Co., St. Louis, MO) and according to Maniatis et al (14) for SI nuclease (Sigma). Cucumber mosaic virus (CMV) single-stranded genomic RNA, lambda DNA, and tobacco mosaic virus (TMV) replicative form (RF) dsRNA were used as nucleic acid controls for enzyme digestion. The procedure of Diaz-Ruiz and Kaper (4) was followed for the differential precipitation of nucleic acids.

Molecular weight standards for size estimations of cassava dsRNA were citrus tristeza virus (CTV) RF dsRNA (13.3 x 10^6 M, relative molecular mass), Phaeolus vulgaris 'Black Turtle Soup' (BTS) dsRNA (0.6 x 10^6 M) (21), TMV dsRNA (4.1 x 10^6 M), wound tumor virus (WTV) genomic dsRNAs (2.9, 2.4, 2.2, 1.8, 1.15, 1.1, 0.8, 0.6, and 0.33 x 10^6 M) (18), CTV, BTS, and WTV dsRNAs were provided by R. Jordan, ARS, Beltsville, MD. Molecular weights were determined on 1% agarose gels for the high M, dsRNA and on 5% polyacrylamide gels for the low M, dsRNA by the method of Bozarth and Harley (2).

**Intracellular location of dsRNA.** The procedure of Powell et al (17) was used for the subcellular fractionation of cassava leaf extracts with the following initial modification: Ten grams of cassava leaves were homogenized with a razor blade in a buffer consisting of 30 mM Tris-Cl, 1 mM EDTA, and 3 mM 2-mercaptoethanol, pH 7.4. Samples from each of the fractions were stained

This article is in the public domain and not copyrightable. It may be freely reprinted with customary credit citation of the source. The American Phytopathological Society, 1987.
Fig. 1. Variety of double-stranded RNAs (dsRNA) isolated from cassava plants. dsRNAs were extracted from 0.5–1.0 g of cassava leaves as described. Electrophoresis was in 5% polyacrylamide gels in 40 mM Tris, 20 mM sodium acetate, 1 mM EDTA, pH 7.8, for 16 hr at 20 mA. Gels were stained with 100 ng/ml ethidium bromide. A, Lane 6 wound tumor virus dsRNA; lanes 1, 2, 4, 5, 7, 8, 9, 13, and 14 are extracts from the cassava clone Secundina; lanes 1, 7, 8 (Secundina), and 10 (non-Secundina Manihot esculenta clone) are extracts from cassava common mosaic virus (CMMV) infected plants; lanes 3, 11, and 12 are extracts from different M. websteriae plants. Lanes 15–17 are from a 1% agarose gel which compared the large cassava dsRNA with those of TMV (lane 17) and CCMV (lanes 15–16). B, A portion of a 5% polyacrylamide gel which shows the variability of the dsRNAs that occur between 0.61–0.41 × 10⁶ M_r (M_r = relative molecular mass) (S-dsRNA) in the clone Secundina.

undenatured or heat denatured TMV genomic RNA was inoculated onto Chenopodium quinoa Wild., as an infectivity control. Samples were heat denatured by boiling for 2 min followed by quick chilling on ice (19).

RESULTS

Variety of dsRNAs isolated from cassava plants. dsRNA extractions of Secundina plants thought to be virus-free and those infected with CCMV revealed numerous dsRNA species (Fig. 1). Reproducible bands occurred at 6.6, 0.61, and 0.41 × 10⁶ M_r (Fig. 2). The 6.6 × 10⁶ M_r band is referred to as L-dsRNA and the 0.61–0.41 × 10⁶ bands are collectively referred to as S-dsRNAs. The occurrence of other bands varied from one extraction to another. Lanes 1, 7, 8, and 10 (Fig. 1A) are dsRNAs extracted from different plants infected with CCMV. dsRNA gel patterns of CCMV-infected cassava always produced one, and usually two, bands occurring at or slightly above the TMV RF (4.1 × 10⁶ M_r) band (Fig. 1A, lanes 15–17). This size range is where a full length potyvirus RF (about 4.2 × 10⁶ M_r) would occur. Lanes 1, 2, 4, 5, 7, 8, 9, 13, and 14 (Fig. 1A) are dsRNAs obtained from different apparently healthy (2, 4, 9, 13, 14) and CCMV-infected (1, 7, 8) plants of the virus indicator clone Secundina. All of the Secundina plants at the U. S. Plant Introduction Station contained the L-dsRNA band and usually the S-dsRNA bands. Out of 30 Latin American cassava introductions (non-Secundina clones) screened, only two had the L-dsRNA band, and only plants containing the L-dsRNA band contained the S-dsRNAs. However, not all plants containing the L-dsRNA band contained the S-dsRNAs (Fig. 1A, lane 8). Variability among the S-dsRNAs can be seen (Fig. 1B). Individual plants (0.5 g of tissue) of the clone Secundina were screened for dsRNA and resulted in a variety of S-dsRNA banding patterns.

Cassava dsRNAs bound dsRNA specific antibodies (5), precipitated in 4.0 M LiCl, were resistant to DNase I, and were resistant to RNase A digestion in high salt (0.3 M NaCl, 30 mM

Fig. 2. Molecular weight determination of major cassava dsRNAs. o-o: The relative molecular mass of the large dsRNA (L-dsRNA) (○) from cassava was estimated by comparing it with the dsRNAs of CTV, BTV, TMV, and WTV dsRNAs 1-4. dsRNAs were fractionated on a 1% agarose gel. ●-●: The M_r of the small dsRNAs (S-dsRNAs) (●) from cassava were estimated by comparing them to wound tumor virus dsRNAs that were fractionated on a 5% polyacrylamide gel.
trisodium citrate) but degraded in low salt (15 mM NaCl, 0.15 mM trisodium citrate) conditions (data not shown). Cassava dsRNAs (Fig. 3, lanes 7–9) were resistant to SI nuclease (single-strand specific) digestion in both low and high salt conditions compared with cucumber mosaic virus single stranded RNAs (susceptible to digestion) (Fig. 3, lanes 1–3) and TMV RF (resistant to digestion) (Fig. 3, lanes 4–6).

Biological characterization of the Secundina dsRNAs. None of the dsRNAs were mechanically transmitted by sap to M.

**Fig. 3.** Nuclease SI digestion of cassava dsRNAs. DNase I treated nucleic acids were incubated with 800 units per milliliter of SI nuclease for 30 min at 22 C under either high salt (300 mM NaCl, 30 mM trisodium citrate) or low salt (15 mM NaCl, 0.15 mM trisodium citrate) conditions. Lanes 1–3 are cucumber mosaic virus RNA (10 μg) (fractionated on a 1% agarose gel) incubated with no enzyme, incubated with SI and high salt, and incubated with SI and low salt, respectively. Lanes 4–6 are tobacco mosaic virus replicative form dsRNA extracted from 0.5 g of infected tobacco tissue incubated with no enzyme, incubated with SI and high salt, and incubated with SI and low salt, respectively. Lanes 7–9 are cassava dsRNA extracted from 1 g of Secundina tissue incubated with no enzyme, incubated with high salt, and incubated with low salt, respectively. Lanes 4–9 are a 5% polyacrylamide gel.

websterae, Pusum sativum L. 8221, C. quinoa, Nicotiana tabacum L., Xanthi and 'Samsun,' Chinese cabbage (Brassica chinensis), or radish (Raphanus sativus). Cassava L- and S-dsRNAs were not transmitted to M. websterae by mechanical inoculation using total nucleic acids from Secundina, or purified undenatured or heat denatured dsRNA as inoculum. Inoculations with TMV genomic RNA, either undenatured or heat denatured, resulted in numerous lesions on C. quinoa (data not shown). Graft inoculations, made by chip budding infected pieces of Secundina stem onto dsRNA-free M. websterae plants, showed that the L-dsRNA could be detected after 6 wk in all of the plants grafted with Secundina but in none of the plants inoculated with dsRNA-free buds from M. websterae (Fig. 4). The S-dsRNAs were not detected in the graft inoculated plants after 6 mo of observation. Meristem-tip culture of infected Secundina resulted in plants free of all dsRNA.

All attempts to purify virions from infected cassava tissue by using standard differential centrifugation procedures, as well as protocols for the purification of tobacco spotted wilt virus (20), carrot mottle virus (16), and SYNV (8) failed as determined by analytical sucrose density gradient centrifugation and electron microscopy. There were no cytopathological differences detected by electron microscopy of thin sections that compared dsRNA containing Secundina with dsRNA-free Secundina. CCMV inclusions were seen in dsRNA containing Secundina coinfected with CCMV (data not shown).

**Intracellular location of dsRNA.** Subcellular fractionation of cassava leaf tissue resulted in the following four fractions: 1. 1.075 g supernatant; 2. top of the glycerol gradient; 3. chloroplast-rich fraction; and 4. nuclei-rich fraction. The chloroplast fraction contained some nuclei, and the nuclear fraction contained some chloroplasts as determined by light microscopy. DsRNA extraction of these fractions showed that the majority of the L-dsRNA band was located in the nuclear fraction (Fig. 5, lane 5). A small amount of L-dsRNA band was seen in the chloroplast fraction (Fig. 5, lane 4). No dsRNA was found at the top of the glycerol gradient (nonchloroplast, nonnucleic fraction, pelleted at 1.075 g.

**Fig. 4.** Graft transmission of cassava dsRNA. DsRNAs were extracted from 1 g of tissue and fractionated on a 5% polyacrylamide gel. Lane 1, mock inoculated Manihot websterae; lanes 2–5, DsRNA extracts from different M. websterae plants graft inoculated with Secundina; lane 6, DsRNAs extracted from Secundina inoculum source; lane 7, cucumber mosaic virus replicative form dsRNAs.

**Fig. 5.** Subcellular location of cassava dsRNAs. Ten grams of Secundina tissue were homogenized with a razor blade and filtered through Miracloth. The filtrate was centrifuged at 1,075 g and the pellet resuspended in 2 ml of buffer, layered on a discontinuous glycerol gradient (50, 75, and 90% w/w), then centrifuged at 20,000 rpm for 2 hr in a Beckman SW 40 rotor. Lane 1, dsRNA extracted directly from Secundina tissue; lane 2, dsRNA extracted from the 1,075 g supernatant; lane 3, dsRNA extracted from the top of the gradient; lane 4, dsRNA extracted from the chloroplast fraction; and lane 5, dsRNA extracted from the nuclear fraction.
in 15 min) (Fig. 5, lane 3). L and S-dsRNAs were detected in the 1.075 g supernatant (Fig. 5, lane 2) and in Secundina tissue that was extracted directly for dsRNAs (Fig. 5, lane 1). However, S-dsRNAs were not detected in the glycerol gradient (Fig. 5, lanes 3–5).

The presence of the 6.6 × 106 M₃ L-dsRNA in nuclear fractions, plus a report of rhabdovirus-like particles in nuclei of cassava plants (12), prompted us to compare dsRNAs extracted from Secundina with dsRNAs extracted from Nicotiana clevelandii Gray plants infected with either LNYV or SYNV (plant rhabdoviruses). DsRNAs were not detected in extracts from 1–10 g of rhabdovirus infected tissue using 1% agarose gels (data not shown).

**DISCUSSION**

The size of the large dsRNA (6.6 × 106 M₃) suggests that it might be an RF resulting from a potyvirus infection (single-stranded RNA of 3.0–3.5 × 106 M₃). However, potyvirus dsRNA is difficult to detect from 0.5 g of leaf tissue, whereas the cassava dsRNA is readily detected in this amount of tissue. Potyviruses are also mechanically transmissible, whereas the cassava agent is not. In addition, no potyvirus inclusions were seen in thin sections of L-dsRNA containing leaf tissue. Therefore, it is doubtful that the 6.6 × 106 M₃ L-dsRNA is a product of a classic potyvirus infection.

Kitajima and Costa (12) detected rhabdovirus-like particles in the perinuclear space of symptomless cassava plants. They were not able to detect the particles in leaf tip preparations and they were not able to transmit the particles mechanically. The extreme scarcity of the virus-like particles (possibly allowing them to go undetected in our thin sections), the lack of symptoms in infected plants, and their association with the nucleus make the particles observed by Kitajima and Costa (12) candidates for the virus responsible for the production of the dsRNAs seen in this study. However, if the particles observed by Kitajima and Costa (12) are related to the Secundina dsRNAs, they must be functionally different from LNYV and SYNV, because these rhabdoviruses produce no detectable dsRNA.

The relationship, if any, between the L-dsRNA and the S-dsRNAs remains unclear. There are similarities between the S-dsRNAs and the dsRNA genomes of cryptic viruses (1). Cryptic viruses are latent, contain small segments dsRNA genomes (1.2–0.85 × 106 M₃), are not transmitted mechanically or by grafting, and are seed transmitted. However, the small cassava dsRNAs do not appear to be encapsidated and have not yet been shown to be seed transmitted. It appears that the S-dsRNAs are dependent on the L-dsRNA for replication because they were only detected in plants containing the L-dsRNA.

Because the agent described in this paper is latent, even in the virus isolate group Secundina, dsRNA analysis is the only method currently available to index for this agent. The dsRNA is detectable in small quantities (0.5 g) of cassava tissue using standard dsRNA extraction procedures. DsRNA analysis may also allow for the detection of CCMV (Fig. 1A, lane 10).

**LITERATURE CITED**


