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ABSTRACT

Cornell, J. A., and Berger, R. D. 1987. Factors that influence the value of the coefficient of determination in simple linear and nonlinear regression models.
Phytopathology 77:63-70.

In the fitting of linear regression equations, the coefficient of standard error of the observations. In nonlinear model fitting, the value of
determination (R2) is one of the most widely used statistics to assess the R 2 is best determined by calculating the proportion of the total variation in
goodness-of-fit of the equation. Its value, however, is affected by several the observations that cannot be explained by the fitted model and
factors, some of which are associated more closely with the data collection subtracting this proportion from one. Several statistics that are analogous
scheme or the experimental design than with how close the regression to the standard formula for R2 in the linear regression case are given and
equation actually fits the observations. These design factors are: the range determined to be inappropriate in the nonlinear case. The use of R2 alone as
of values of the independent variable (X), the arrangement of X values a model-fitting criterion is often risky and other statistics should be used to
within the range, the number of replicate observations ( 1), and the variation assess the goodness of the model when responses from quantitative
among the Y values at each value of X. Another little-known fact is the treatments are analyzed by regression techniques.
effect on R2 of the ratio of the slope of the fitted equation to the estimated

Additional key words: coefficient of determination, residuals, standard error.

Linear regression is a commonly used statistical analysis in plant value often are contrary to the principles of good experimental
pathology. It has been used, for example, to determine inoculum design.
density/disease intensity relationships (5), survival of pathogens We shall answer the second question by listing several analogous
over time (16), growth, sporulation, and infection of pathogens statistics to R 2 that are sometimes provided by current computer
under different environments (9,10), model testing (8), and disease programs for regression analysis.
intensity/crop loss relationships (1). Nonlinear regression is used
frequently to fit disease proportions over time to various growth METHODS
models (2,12), disease prediction from environmental parameters
(8), crop loss estimation from disease intensity (13), growth, Artificial data sets were generated and linear or nonlinear models
sporulation, and infection of a pathogen with temperature (3), and were fitted by least-squares regression either by hand calculation or
the relationship of disease intensity to size of experimental plots (7) by the Statistical Analysis System package (15), using the facilities
or to calcium carbonate concentration (4). of the Northeast Regional Data Center of the State University

For both linear and nonlinear regression, the coefficient of System of Florida in Gainesville.
determination is possibly the statistic used most often to assess the
goodness-of-fit of empirical models fitted to data. This is because RESULTS AND DISCUSSION
the value of R 2 is provided by every current computer program for

regression analysis. Nearly every published article, in which Factors that affect R 2 in the fitting of simple linear regression
regression analysis was performed, lists the R2 associated with each equations. In the simple linear regression equation, Y1 = a + bXi +
equation fitted. The appropriateness of R2 to assess the goodness of ej, Y. is the ith observation of the dependent variable and Xi is the
a fitted model is under investigation (11) and, until alternative value of the independent variable at which Yi is observed. The
measures are suggested, it is imperative that the meaning of R2 and quantities a and b are unknown parameters that represent the
the factors that influence it be understood. intercept and slope of the regression line, respectively. The random

In the fitting of regression models, researchers occasionally raise error associated with Y1 is termed ej. The usual assumptions
one or the other of the following two questions when they discover regarding the errors are, that in a population of N values of Y,, the
the value of R 2 is extremely low for their model: Why is R 2 so low random errors (el) have zero mean, a common variance (o2), and
when the equation seems to fit the data very well? What is the are independent of one another.
appropriate method to calculate R 2 to determine the goodness-of- To illustrate the calculations that are required in the analysis of a
fit of a nonlinear model, e.g., exponential models or power fitted regression equation, the simple linear regression equation ( Y
functions? = a + bX, + ei) is fitted to each of two data sets denoted as A and B.

In this article, to address the first question we identify some of the The observations (Y) are the same in data sets A and B but the
factors in a data set that lower the value of R2. Our purpose in ranges of Xi are different (Table 1). The plots of the fitted regression
singling out these factors is twofold: first, to acquaint users of equations are shown in Figure 1.
regression techniques of the potential pitfalls that result from Included among the entries in Table 1 are the predicted responses
relying too heavily on R2 as a model closeness criterion, and (Y•) at each Xj^obtained with the fitted regression equation. The
second, to point out that corrective actions to obtain a high R 2  quantity Yi - Yi, represents the difference between the" observed
The publication costs of this article were defrayed in part by page charge payment. This value (Y) and the predicted value (Y) at Xj, and this difference is
article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. called the residual corresponding to the it observation. The larger
§_1734 solely to indicate this fact. the values of the residuals, the less confident one feels about how
©1987 The American Phytopathological Society well the estimated equation fits the observed values. A numerical
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measure, therefore, of how well the model actually fits the data is containing the variable Xis employed. A reasonable measure of the
the variance of the residuals, s2 = SSE/ (N- 2). When the residuals effect of Xin explaining the variation in Yis R2 , calculated either as
are large, s2 is large. Also, the individual residuals can be plotted
against the values of X or the values of Yj to ascertain if the linear R - SSE/ SSr or R= (SS - SSE)/ SS y (1)
model is indeed the appropriate choice. In both plots, if the model is
correct, the values of the residuals will exhibit random scatter The quantity (SS r- SSE) is equal to bSSxy and is the regression
about the line, Y- Y = 0, and the approximate scatter is uniform sums of squares (S.S. Regression), that is, the variation in the Y,
for all values of X and/or Y1. values explained, or accounted for, by the fitted regression

The positive square root Of S2 (i.e., se) is called the estimated equation Yi a + bXj.
standard error of the Y. values about the regression line (6), that is,
S= X/ Y( - Yi)

2 / (N- 2) is a function of the residuals, Y1 -- j,
about the regression equation. Thus Se represents a measure of the R B 0.8575 R 0.9029

error with which any observed value of Y is selected from the 50 - .o + 5.68x Y 10-.3 + 3.04X%

distribution of Y values at each value of X. A
In Figure 1, the two plots ofXand Yvalues for sets A and B differ 0 A

only in the spread or range of Xv. In set A, the range is 13 - 1 = 12 408 A

units, whereas in set B the range is 8 - 1 = 7 units. The different
ranges of Xi result in different estimates both for a and b in the two
fitted regression equations and also different estimates of the error Y 30 _
variance (s). Because R2 = 0.9629 for the fitted equation with data
set A is higher than R2 = 0.8575 with data set B, in spite of the fact
that the estimated slope, b, is larger with set B than with set A, we 20

are led to believe the equation Y= 10.63 + 3.04Xi fits the data in set A.8 A.B

A better than the equation Y1 = 6.0 + 5.58Xi fits the data in set B. A.B

Before we can determine if indeed this is the case, we need to define 10
R2

Definition of R2 . In the calculation of the summary statistics
(Table 1), the quantity SS_ is a measure of the variation in the Y, 0.0 L _L

2 4 6 10 12 14
values about their mean, Y. In other words, SS y is a measure of the X
uncertainty in predicting Y without taking X into consideration. Fig. 1. Linear regression equation fitted to two data sets (A and B) with
Similarly, SSE is a measure of the variation in the values of Y1, or identical Y values. The different ranges of X cause different estimates of
the uncertainty in predicting Y, when a regression model slopes, intercepts, and R2 values.

TABLE 1. Calculations needed to obtain the fitted regression equations and other summary statistics for two data sets

Observations Data set A Data set B

Yi Xi Yi- Y Xi- S Y- Yi Xi Xi- X Yy r,- Yi

15 1 -16.125 -5.75 13.67 1.33 1 -3.5 11.58 3.42
17 2 -14.125 -4.75 16.70 0.30 2 -2.5 17.17 - 0.17
20 3 -11.125 -3.75 19.74 0.26 3 -1.5 22.75 - 2.75
18 4 -13.125 -2.75 22.78 -4.78 4 -0.5 28.33 -10.33
43 9 11.875 2.25 37.96 5.04 5 0.5 33.92 9.08
42 10 10.875 3.25 40.99 1.01 6 1.5 39.50 2.50
45 12 13.875 5.25 47.06 -2.06 7 2.5 45.08 - 0.08
49 13 17.875 6.25 50.10 -1.10 8 3.5 50.67 - 1.67

249.0 249.0
Y 31.125 31.125
,•Xi 54.0 36.0
X 6.75 4.5

y( y )2 
= SS Y = 1,526.875 1,526.875

I(X- =•_) SS x= 159.50 42.0
X(X- (Y) - Y)SSXY 484.25 234.5
y(y. yi)2 

= SSE 56.67 217.58

Estimate of the intercept
= Y - bX = 10.63 6.00

Estimate of the slope
b = SSxy / SSx = 3.04 5.58

S. S. Regression
SS y- SSE= bSSxy= 1,470.21 1,309.29

Coefficient of determination
R'= 1 - SSE/SSr= 0.9629 0.8575

Estimate of oe:
s= SSE/(N- 2)= 9.44 36.26

Slope/standard error se 0.9894 0.9267

Fitted regression equation Y 10.63 + 3.04X; j1  = 6.00 + 5.58Xi
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The quantity R2 is interpreted therefore as the proportion of the replicated observations of Yand the variation in these Yvalues at
total variation associated with the use of the independent variable each setting of X for a given set of X values, 2) the range of the X
X. Thus, the closer R 2 is to one, the greater is the proportion of the (largest value minus the smallest value), 3) the arrangement of X
total variation in the Y values that is explained (or accounted for) values within a given range, and 4) the value of the slope estimate
by introducing the independent variable X into the regression (b) in relation to the standard error (Se). To address each of these
ecuation. But does this acutally mean that the higher the value of four cases, we shall use pairs of data sets to illustrate the behavior of
R the better the model fits the data? R2. In three of the four cases, the fitted model is the same for each2 S2

In a descriptive sense, formula (1) shows that R2 is an estimator data set and equivalent fits are obtained, as measured by se
of the strength of the relationship between Y and X because R 2 is SSE/ (N- 2), yet the R2 values for the two models differ. A rule that
directly related to the sum of squares for regression, which is itself a states how the value of R 2 is affected for each case is given.
function of the estimated slope, that is, S. S. Regression = b SSxr. Case 1-sample size effect on R2 . Data sets C and D produced
But we shall see that the magnitude of the strength of this the same fitted model: Y=-0.8 + 2X, which is shown in Figure 2
relationship, R2 , can also be influenced by the choice of X values along with the summary statistics. In data set D, three observations
and the sample size. In particular, we will discuss the following (n = 3) were taken at each setting of X and the average of each set of
cases as they pertain to factors that affect R2

: 1) the number of triplicate Y values is equal to the Y value in set C at the
corresponding value of X. The estimate of the unexplained
variation in the Y values at each value of X is the same (s 2 = 1.066)
with both data sets, which means the regression equation fits the
data values in both sets equally well. Note that only with set D,

10 A which has replicated Yvalues, can the value ofs2 be checked. The
lower R 2 with data set D is of interest even though the fitted model
and the measure of closeness of the model to the data, S2, are
identical with both sets. The lower R 2 with set D leads one to believe

8 the fitted model (Y = -0.8 + 2X) is not as good with set D as it is
with set C. Although it is true that the fitted model explains less of
the total variation in the Y values of set D than in set C, it is
important to realize that the variation among the replicated Y

2 values at each value of X, although contained in the total sum ofy 88 4.9259 squares of the Y values, is not accounted for in the regression sum
v =of squares. Hence, by collecting replicate Y values at one or more

SSx =10 values of X in an attempt to obtain a valid estimate of the error
-8 20 variance (a principle of good experimental design), this action will

4 0XY result in lowering the value of R 2. However, in lowering the value of
SSReg = 40 R 2 by collecting replicate Yvalues, one gains something in return.

SSE = 3.2 Using the replicated observations only, one can obtain an unbiased
estimate of Ce. With the unbiased estimate of oe, onecan test for

2

*A
6

10 B -

410

2RE = 0.368

8 
SSy = 9.5

2 SSx = 14

SSReg = 3.5

SSE = 6.0

6 R 086

Y Z:ss 133.8
Y B

SS 30 6

SS8 60
4 XV

SSReg= 120

SSE = 13.87 4 -

F1R =0.5002 F

SSy =12

2 * SSx 24

* SSReg = 6.0
0 I I I SSE =-6.0

0 I 2 3 4 5

X 0 I 1 I

Fig. 2. Linear regression equation (Y = -0.8 + 2X) identical for two data 0 1 2 3 4 5
sets. A, Set C with one observation of Y at each X value. B, Set D with X
triplicate observations of Y. The estimated variance (s = 1.066) is the same Fig. 3. Identical linear regression equations fitted to two data sets. A, Set E
for both data sets. The value of R2 decreases as the number of replicate with three units in the range of X. B, Set F with four units. The R2 value
observations increases. increases as the range of X increases.
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adequacy of the fitted regression equation. This test is described the ratio b / se is a measure of the strength of the linear relationship
after Rule 3. Without replicate Yvalues, the test is not possible. between Y and X relative to the standard error of the Y values, the

In retrospect then, in the case of the two models fitted to sets C larger the value of b / Se, the greater is the effect of X on Y. Since the
and D, the values of s' were the same, therefore, the models two fitted models have the same b/se value, X affects Yequally in
possessed equivalent fits to their respective data sets. Yet R2 with the two sets. However, the range of Xin set G is 5 - 1 = 4 units and
set D was 0.0294 lower in value than R 2 with set C because of the in set H, the range is 3.5 - 2.5 = 1 unit (Fig. 4).
variation among the replicate Y values in set D. The estimated slope of the regression equation with set H is

Rule 1. The value of R 2 for a fitted model (at a fixed value of almost three times as large (5.72/2.06 = 2.777) as the estimated
/ se) is reduced when more than one (n > 1) Y value is collected at slope for set G. However, the magnitude of the estimate of the

each value of X. The ratio b/Se is a measure of the strength of the unexplained variation in Y, se, is approximately eight
linear association between Y and X relative to the unexplained (3.8837/0.5053 = 7.7) times greater with set H than with set G.
variation in Y. The reducing effect of collecting n > I replicate Although both models possess a value of 2.9 for the ratio b/Se, R 2 is
values of Y at each X on R 2 becomes less for large values of 52% larger (0.9655 vs. 0.637) with set G than with set H because of
b/Se(> 5). the greater range of X values in set G. In other words, X has four

Case 2-the effect of the range of X onR 2. In the initial example, times more leverage in set G than in set H and this produces a higher
the Yvalues were identical with data sets A and B, however, in set A R 2 value with set G.
the data was taken from a larger range of X (12 units) than in set B Rule 2. For N equally spaced values of X with range W, suppose
(range = 7 units). This larger range was responsible for the higher a single observation of Y is taken at each X. If the relative measure
R2 associated with the closer fitting model of set A. The difference of linear association of Yon Xis fixed to be bluoe, then the value of
in the ranges of X values resulted in not only different models for R 2 increases with increasing range W. If N is allowed to increase
each set, but also different estimates of the variance (s2) as well as indefinitely, R 2 converges in value to t/ (I + t) where t =
different R2 values. (blae)2 W2/ 12. This formula for the value of R 2 is given in (14).

Suppose we examine the effect of varying the range of X on the Case 3-the effect of the arrangement of X values in a given
value of R 2 by considering first the case where the fitted models for range on R2 . Data sets I and J each have the same range of X but in
the two data sets are again identical in form, Y, = 2.5 + 0.5X,. In set I the values are equally spaced, whereas in set J the values of X
Figure 3, two data sets (E and F) each contain triplicate Y values at are at the two extremes of the range (Fig. 5). With both data sets,
each setting of X. The range of X in data set F is larger (5 - 1 = 4 the fitted model is Yi = 2 + 2.5X1 . The higher R 2 with data set J is
units) than for set E (5 - 2 = 3 units). Since, in both data sets, the caused by two factors; the lower value of s2 and the higher value of
same number of Y values were collected at the respective low, SS x with set J. If the value ofsf had been the same in both data sets,
middle, and high levels of X, then SSx with set F exceeds SSx with the R2 with set J would still exceed R2 with set I since SSx is
set E because the range of X is greater with set F. maximized by taking half of the observations (N/ 2) at each of the

The range of X affects SSx and affects the sum of squares for extreme values of X.
regression since Rule 3. The value of R2 for a fixed range W of X is maximum if

when Nis even, N/2 observations are collected at each end point of
SS R eoW. If Nis odd, collecting (N+ 1)/2 observations at one end point

=258X and (N- 1)/ 2 observations at the other end point will maximize R2.

If Nis allowed to increase indefinitely, R 2 converges in value to v/ (1
where b is the estimated slope of the regression line. Since the slopes + v) where v = (b/oe) 2 W2/4, as shown in (14).
of the two fitted models with data sets E and F are identical, then The attempt to maximize SSx (and R 2) by selecting two extreme

[S. S. Regression (F) = L2SSX(F)] >values of X and collecting data only at these values can only be

IS. S. Regression (E) = b 2 SSX(E)] (2) 1

If the value of the ratio SSx/ SS rwith set F exceeds the value of this 10
ratio with set E, RJ2 with set F exceeds R2 with set E:

Y = -0.02 + 2.06X 0H

XR S(F)/SY(F)] RE X(E) /SSY(E)RG 0.9655

even though the fitted models are the same and their fits are SS= 43.952 H
equivalent (i.e., s2 = 0.857) in the two data sets. Thus, when fitting a ss = 10 /0

simple linear regression model, the greater one spreads out the X SS = 20.85
values (thus directly affecting SSx) relative to the spread of the Y XY
values, the larger the ratio SSx/ SS ybecomes and for a fixed value 6 SSReg =42.44 /
of b, the higher will be the value of RJ2. SSE =1.52 G - 11.96 5.72XA cautionary note: The occurrence of an observation (Y) at an / 2
extreme Xi can influence the R2 disproportionately. For example, a R 2 0.6370

model fitted to a cluster of 5-20 observations may have an R 4 Ssy = 32.1
< 0.2; but with the addition of a single observation at an extreme X. HO 0/

outside the cluster, the R2 could increase to be >0.95. The / Ho SSx = 0.625
researcher must be assured that response values at the extremes of G / SSx y- 3.57

the range of X are good observations rather than being outliers. 2 - SSReg = 20.45
If an outlier Y value exists within the range of X, the outlier SSE - 11.65

observation will have a larger residual than will the other
observations. The residuals of outliers make both SSE and SSy
large. Because R2 = 1 - SSE/SSy, with outliers where both SSE 01
and SSy increase simultaneously, the ratio SSE/SSr is forced 0 1 2 3 4 5
toward unity so that R 2 approaches zero. Hence, outlier
observations within the range of X have a reducing effect on R2. Fig. 4. Linear regression equations fitted to two data sets with equivalent

Now let us consider the case in which two data sets (G and H) ratios ofb / Ise In Set G (dots and solid line), the range of Xis four units. In
again have different ranges of X, but here the models possess the Set H (circles and dashed line), range of Xis one unit. The R2 value increases
same value for the ratio, b / se- In Rule 1, it was stated that because as the range of X increases.

66 PHYTOPATHOLOGY



recommended if one knows beforehand that the relationship SSPEj is called the sum of squares pure error at Xiand SSPEj has
between Y and X is a straight line. When this is not known and associated with it ni- 1 df. Pooling or summing the SSPE1 across
further, if a test of the nonlinearity of the relationship is desired, the k levels of Xj, we obtain the sum of squares pure error
then at least three distinct values of X must be used. When there are
exactly three Xvalues, the middle value is preferably at or near the SSPE = i jhj= I( Yij Y )2.
middle of the range of X values. The test for nonlinearity involves
the following steps: SSPE has i= (ni- 1) = (N- k) df.

1. Replicate observations must be collected at one or more levels 3. Subtract SSPE from SSE, where SSE is obtained from the
of X. analysis of the N observations as in Table 1, to get SS Lack of Fit,

For illustrative purposes, let us denote the replicated Yvalues at that is
Xi by Y1, wherej= 1, 2,... ni and let there be k levels of X,, i.e., Xi,
X2,..., Xk so thatnl + n2 + ... + nk= N, where ni, 1. That is, if at X1  SS Lack of Fit = SSE - SSPE.
three values of Yare collected, they are denoted as Y11, Y12, and
Y13. SS Lack of Fit has (N- 2) - (N- k) = k - 2 df.

2. Anestimate of the variability of the YU values about their 4.° The test for nonlinearity (or the test of the hypothesis, lack of
mean, Y i, is calculated using the replicated observations at X1, as fit equals zero) of the fitted model is performed by calculating

SSPE/= Ij l(Y---Y- 2i). F S SS Lack of Fit/(k- 2)
SSPE/(N - k)

and then comparing the calculated F value to a tabled value of F
12 - with k- 2 and (N- k) df in the numerator and in the denominator,

respectively, for some level of significance, say a• = 0.05.
2 o) Nonlinearity is suspected when the calculated F value exceeds the

10 R 20.9541 tabular value.
sS _ 32.75 Case 4-the effect of the ratio bl/e on R 2 for a fixed value of N
SSx = 5.0 and range W. Data sets K, L, and M each consist of only five values

0.75 of Y, one at X= 1, 2, 3, 4, and 5 (Fig. 6). In each of the three data
88xy=12.5
Y SSX . 31.25 sets, the fitted models possess equivalent fits in terms of producing

SSE 1.5 2 °the same value for the estimate of unexplained variation in Y, i.e.,BR 0 0.9825 Se2 = 1.067. The strength of the linear relationship between Yand X,
SSy= 57.25

VSx as measured by the ratio b/Se however, increases with increasing
42 = 0.5 slope estimate as one proceeds from K to L to M. This increase in
SxY, 22.5 slope for a fixed value ofSe produces an increase in R 2 for sets K, L,
SSReg = 56.25 and M of 0.6667, 0.9259, and 0.9697, respectively.
-SSE = 1.0 Rule 4. When two simple linear regression equations are fitted to

their respective data sets where the ranges of Xare the same and the
fitted models are equivalent in terms of s2, then the fitted model

0 2 3 4 having the greater slope (b) will also possess the higher value of R2.0 1 2 3 4

x To summarize, through the use of several data sets to which
Fig. 5. Identical linear regression model (Y = 2 + 2.5X) fitted to two data simple regression models were fitted, the value of R2 was shown to
sets (I and J). The R2 is higher with set J because the observations are be affected by the different data collection schemes. Specifically,
grouped at the extremes of the range of X. the factors of the sampling scheme that were seen to have a

I f i I i

A B C

10 -R 0.0667 R = 0.9289 R= 0.9697
K L M

Y=2.8 + 0.8X V-0.8+2.0X V-4.4+3.2X

6 •
y

400

2-

0

-2 I I I I I Io 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5x x x

Fig. 6. Linear regression equations fitted to three data sets with equivalent variance (se 1.067). A, Set K with b= 0.8. B, Set L with b =2. C, Set M with b=
3.2. The R2 value increases as slope (b) increases.

Vol. 77, No. 1, 1987 67



reducing effect on R' were, replicated Y values at one or more equations 3 and 4, one takes the logarithms of both sides of the
values of X, defining a small range of X values at which to collect equalities in equations 3 and 4 to linearize the models, so that for
the observations, and, by observing the Y's at intermediate values equation 3:
of X across the range. In emphasizing the latter two factors,
minimum range and intermediate X values, our intent is primarily Yi = a + bxi + ei (5)
to point out why an experimenter may have obtained an R2 that is
considered lower than expected and is not to suggest ways to avoid where yi = logio(Y,), a = logio(a), and xi = logio(Xi); and for
getting a low R2. equation 4:

Suppose one can choose the specific X values that might be
termed reasonable to investigate the possible presence of a linear y; = a + bXi + ei (6)
relationship between Y and X, how then should they proceed?
Keeping in mind rules 1,2, and 3, we recommend the following for where y, = ln(Yi), a = In(a), and Xi is not transformed. Then using
fitting a simple regression equation: linear or ordinary least squares, the estimates of the parameters a

1. Collect replicate observations of Y at each setting of X so as and b in equations 5 and 6 are calculated and the antilog of 6 along
to be able to calculate an estimate of 2f. Keep in mind that multiple with the estimate b are substituted into equations 3 and 4 to

e 2observations of Y at each X have a reducing effect on the R , produce the prediction equations, e.g., for equation 3:
therefore, R 2 should not be relied on as the sole model-fitting (
criterion. 10ýi = IOaXi (7)

2. Select the range of X to be as large as possible, with the
assurance that the relationship between Yand X is linear over the where 105 is the antilog of 6, and for equation 4:
range. If one is not sure of the existence of a strict linear
relationship between Y and X, then increasing the range of X Y• = exp(5' )= exp(&) exp(bXi). (8)
increases the likelihood of detecting nonlinearity in the
relationship of Y on X if such exists. To detect this nonlinearity, The explanatory power or goodness-of-fit of thefitted models
collect one or more observations near the middle of the interval of (Eq. 7 and 8) in terms of the proportion of total variation in Y, by
X values and test for model lack of fit. If lack of fit is present, the using Xi in the models can once again be measured by the
simple linear regression model is not an adequate representation of coefficient of determination. Previously, the formula for R2 , given
the true relationship between Yand X and the equation should be in equation 1, was R2 = I - SSE/SS y; this equation can also be
upgraded by the addition of terms like cX 2 and dX3. written in terms of the Y1, the predicted values Y,, and the mean Y,

3. For a fixed range of X, observations collected near the end as:
points of the range will make larger the quantity SSx = I (Xi - X )2
and this increases the precision of the slope estimate of the fitted R2 =-y (yYi- )

2
/•(Y>--)

2. (9)
model.

The statistical significance of R 2. In simple regression, the To compare the quantity in equation 9 to other statistics also used
statistical significance of R 2 is determined by testing the hypothesis to measure the goodness-of-fit of empirical models, we denote the
that the slope (b) of the regression equation is zero. The test on the quantity in equation 9 as R1 .
slope is performed by first calculating the F ratio [F = S. S. To assess the goodness-of-fit of linear regression equations of
Regression/(SSE/(N- 2))]. Then the value of the Fratio for the the form in equations 5 or 6 or of a similar form with several X's,
regression model is compared with the tabular value of F(1,N_ 2,0)5 three statistics that are analogous to R2 and that are used by some,
where 1 = df in the numerator, N- 2 =df in the denominator, and a are
= the significance level. When the F ratio of the model is equal or
greater than the tabular F value, the hypothesis of zero slope is R ( Y--) 2/S5r (10)
rejected, i.e., a statistically significant regression has been
obtained. An approximately equivalent test on'R 2 would involve R3 ( y - -) 2 /SS y (11)
calculating R = F(IN 2, a)/ [F(IN- 2,) + (N-- 2)]. If the R2 of the
model is equal to or greater than R,,, then the regression equation is R4= 1 - 1(ri - r)2 /SSr (12)
statistically significant. However, as N becomes large (>50), the =-
value of FuIN -2,.) becomes small and along with N in the In equation 11, Y =I Yi/Nandinequation 12, ri Y1- Yi(theith
denominator, Rc, can be very small. For example, with a = 0.05 residual). What we would like to know is to measure the goodness-
level of significance and N = 50, F(1,48,0.05) = 4.03 and R 2 of-fit of the nonlinear fitted models (Eq. 7 and 8), are the statistics

2 2 2
(4.03/52.03) = 0.0775. With these parameters, an R of only- >0.0775 R,, R2 , R 3, and R 4 equivalent? If they are not, which of the statistics
is required to be statistically significant. Such a test on R 2 is is the appropriate one for nonlinear models such as those in
sometimes meaningless since low R2 values, however statistically equations 7 and 8, or any other form of nonlinear model for that
significant, are intuitively unappealing unless some explanation is matter? Before we attempt to answer these questions, let us
given (e.g., replicated Yvalues, etc.) concerning how the low value illustrate the calculations necessary to compute the values of the
of R2 resulted. four R , i = 1, 2, 3, 4, when a model of the form of equation 3 is

An R 2 statistic to measure the goodness-of-fit of nonlinear fitted to the data set in Table 2. The first stage in the model-fitting
models. In this section, we extend the discussion on the use of R2 as exercise is to transform the Yi and Xi values to their logic values
a measure of the goodness-of-fit but now the models are nonlinear (Table 2). The fitted model for logio(Y 1) as a linear function of
in the unknown parameters. Although our discussion will center on logic (X1) is:
the fitting of two simple nonlinear equations, the arguments are
applicable for more complicated nonlinear equations. ji = 0.2485 + 1.757x, (13)

Consider the following nonlinear models, with R 2 = 0.9968, which was calculated as in equation I (Fig. 7).
Yi = aX'bei (multiplicative errors) (3) Note that the value of R2 = 0.9968 refers to the proportion of the

total variation in y1(loglo(Yi)) that is explained by the fitted model
and (Eq. 13), but this is not the proportion of the total variation in the

original Y1 values explained by the fitted model.
Y; = a exp(bXi + ei) (exponential errors). (4) The parameter estimates it = 0.2485 and b = 1.757 in equation 13

are used to obtain estimates of the original parameters & = 10ý, and
Typically, to avoid the difficulties of having to use a nonlinear b b, which when substituted into equatiort 7 produce the
least-squares procedure to estimate the parameters a and b in prediction equation Y, = 1.772Xi,757. Values of Yi corresponding
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to values of X, are calculated using the prediction equation or by higher R' value than if replicate observations are taken. Also, a
computing Yk = 10,1. These values of Y i are listed in Table 2 and wide range of X values will make R1 higher than a narrow range of
are used to calculate the values of R1, R2, R3, and R4 using the X values. However, the optimal arrangement of X values within the
formulas (Eqs. 9-12, respectively). For our data set, these values range depends upon the particular form of the power or
ar. R1 = 0.9969, R2 = 0.9293, R3 = 0.9289, and R4 = 0.9973. The exponential model that is being fitted. Unlike the linear regression
four R2 statistics, which are equivalent in the linear regression case, case where collecting observations at the extremes of the range of
have a range of values equal to R4 - R3 = 0.0684, for this nonlinear Xi variables increases the value of R', the optimal settings of the X
regression problem. And although we have not observed with our variable to estimate the unknown parameters in a nonlinear model
example the particular extreme values that are possible with some depend upon the actual values of the parameters; as such, the
of the R• values, it is possible for both R2 and R3 to exceed unity. optimal settings of X cannot be specified without first stating the
Furthermore, R = Ri only if Y= Y; R> Ri for all' other cases. form of the nonlinear model. In most cases, the Xvalues should be
Because R1 in equation 9 is always less than or equal to unity, it is set at equal-sized intervals throughout the range.
the obvious choice and is thus the appropriate statistic to measure In this paper, we have focused on the use of the coefficient of
goodness-of-fit for both linear and nonlinear regression models. determination (R 2) as a measure of goodness-of-fit of regression

Since RI is our choice to assess the fit of a nonlinear model, the equations. In the literature, the coefficient of determination
question may be asked, should the researcher by concerned with the appears, perhaps more often than any other statistic, as a regression
settings of the variable X to raise R as in the linear regression case? model criterion. Unfortunately, it is also a misunderstood statistic.
Again, a single observation (Y) at each setting of X will produce a Because estimation of the observation variance is often just as

TABLE 2. Calculation of four analogous R2 statistics for a fitted nonlinear modelz (i = 1.772Xi1757)

Logo

Yi Xi yx Yi Yi- Y, - Yi- Y Y,- Y r,-r Yi- Y

2.0 1 0.301 0.000 1.772 0.228 -47.014 -46.270 -0.516 -46.786
5.1 2 0.708 0.301 5.992 -0.892 -42.794 -42.050 -1.636 -43.686

19.9 4 1.299 0.602 20.258 -0.358 -28.528 -27.784 -1.102 -28.886
52.0 7 1.716 0.845 54.164 -2.164 5.378 6.122 -2.908 3.214
71.5 8 1.854 0.903 68.490 3.010 19.704 20.448 2.266 22.714
86.0 9 1.934 0.954 84.241 1.759 35.455 36.199 1.015 37.214

105.0 10 2.021 1.000 101.377 3.623 52.591 53.335 2.879 56.214

ZY =314.5 Y Y,= 336.294 Y(Y1 - Y,)2  
ý(Y- Y) 2  

_(Y,- y)2 I(rir)
2  

SSr

Y = 48.786 Y = 48.042 30.939 = 9,295.53 = 9,291.66 = 27.067 = 10,002.95
(1) (2) (3) (4) (5)

r = Z(Yi- Yi)/7

= 0.744

Formulas: R, = 1 - [(1)/(5)] = 0.9969; R• = (2)/(5) = 0.9293; R32 = (3)/(5) = 0.9289; R42 = 1 - [(4)/(5)] = 0.9973

If a model is linear in the parameters (e.g., Y.= a + bXi+ e,) and the model contains a constant term (e.g., a), then the following eqlualities are true: I) Yi, =
Yi; 2) r = 0; 3)(1) = (4), hence R, = R;4)(2)=(3), hence R= R; and 5)(2) =(5) - (1) = (5) - (4) (3), hence R = R2  = R4 .

I I I I t1 I I '
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EXJ
Fig. 7. Fitted regression equations for a nonlinear model. A, Linear regression of logio (Y) vs. logi0 (X). B, Plot of nonlinear multiplicative model to the
original X and Y values. Note the slight difference in R2 values for the two cases.
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important as model fitting, an accompanying statistic that 4. Campbell, R. N., Greathead, A. S., Myers, D. F., and de Boer, G. J.
measures the proportional reduction in the variance estimate is the 1985. Factors related to control of clubroot of crucifers in the Salinas
adjusted R 2 : Valley of California. Phytopathology 75:665-670.

5. Dillard, H. R., and Grogan, R. G. 1985. Relationship between sclerotial
R' = I - (1- R2) (N- 1)/(N- p - 1) spatial pattern and density of Sclerotinia minor and the incidence oflettuce drop. Phytopathology 75:90-94.

(14) 6. Draper, N. R., and Smith, H. 1981. Applied Regression Analysis. 2nd

= (SSy/ (N- l) ed. John Wiley & Sons, New York. 709 pp.
e1 7. Gerik, T. J., Rush, C. M., and Jeger, M. J. 1985. Optimizing plot size

for field studies of Phymatotrichum root rot of cotton. Phytopathology
where p + 1 is the number of parameters (including the intercept a) 75:240-243.
in the linear or nonlinear model. The quantity &2 is the observation 8. Grove, G. G., Madden, L. V., Ellis, M. A., and Schmitthenner, A. F.
variance estimate obtained from the fitting of the model. The SS y/ 1985. Influence of temperature and wetness duration on infection of
(N- 1) is the variance estimate assuming Y= Y + ei. Thus, when immature strawberry fruit by Phytophthora cactorum. Phytopathology
the model explains a significant amount of the behavior of the Y 75:165-169.
variable, wlt to SS/(N- 1). Like R 2 R, has 9. Johnson, D. A., and Skotland, C. B. 1985. Effects of temperature andl brelative humidity on sporangium production Pseudoperonospora
an upper bound of unity. We recommend RA be used as a model humili on hop. Phytopathology 75:127-129.
criterion along with R 2 , because the two criteria provide 10. Kellam, M. K., and Coffey, M. D. 1985. Quantitative comparison of
supplemental information concerning the fit of a regression the resistance to Phytophthora root rot in three avocado rootstocks.
equation. Phytopathology 75:230-234.
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