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ABSTRACT

Lalancette, N., and Hickey, K. D. 1986. Disease progression as a function of plant growth. Phytopathology 76:1171-1175.

Many plants exhibit susceptibility to infection only during their period of
growth. For these pathosystems, disease progression could be expressed as
a function of plant growth instead of time. The logistic, Gompertz,
monomolecular, power, and other functions can be used to describe plant
growth as well as the increase of disease. Functions describing these two
processes were combined into single models by deriving the absolute rate of
change of the proportion of disease relative to plant growth. Given this
approach, four basic types of models were identified. A model was
described as being either similar or dissimilar depending on whether or not
the disease and plant growth patterns (i.e., their functions) were the same.

Similarly, if plant growth occurred prior to onset of the epidemic, the
model was considered to have a nonsynchronous temporal structure, while
if both processes were initiated at the same point in time, the models were
termed synchronous. Graphic comparisons of data from simulations
indicated that points of inflection, concavity, and asymptotes could be
readily varied through manipulation of model parameters. Although
modeling disease progression as a function of plant growth does not require
a cause and effect relationship, these models would, nevertheless, be
particularly applicable to pathosystems in which the occurrence of disease
is dependent on the production of young, susceptible plant tissue.

The classic ecological approach to the study of population
dynamics is to examine changes in number or density of a species
over time. The absolute rate of change of population size with
respect to time was often described by the typical bell-shaped
curve. The mathematical formulation of this process into the
logistic function was first performed by Verhulst in 1838 (13). The
logistic function was further modified for modeling plant disease
progression by allowing the pathogen population to be measured
as the proportion of tissue infected (12). The monomolecular,
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Gompertz, Richards, and Weibull functions have also been
proposed as models for plant disease progression (4,9). Similarly,
their rate of change of disease was determined relative to time and
their dependent variable was also expressed as the proportion of
tissue infected.

The expression of the proportion of disease as a function of time
assumes that all plant material is susceptible to infection
throughout the epidemic. However, many plants or plant parts
change in their susceptibility to disease over time. Populer (10)
presented a tentative system for explaining the changing pattern of
susceptibility in relation to the plant part age. He classified plant
part susceptibility into four groups: Type I, susceptibility during
the growth period; Type 11, susceptibility increases with tissue age
during the adult period; Type III, susceptibility initially high
during the growth period decreasing to a low level in middle life,
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then increasing as the tissue ages; and finally, no susceptibility
changes during the entire life span of the plant part. We propose
that for pathosystems having Type I plant susceptibility, disease
progression could be expressed as a function of plant growth.
The objective of this study was to combine functions that
describe disease progression and plant growth into a single model.
Emphasis was not necessarily on correcting disease progression for
plant growth, as recently performed (6), but rather to model it as
the plant grows. Thus, the dependent variable was expressed as an
amount or density of diseased tissue, and the absolute rate of
change of disease was derived relative to plant growth instead of
time. And because plant growth has been modeled by a variety of
functions (2), many of which are used for describing disease
progression, not one, but an entire set of models was derived.

DERIVATION OF MODELS

The progression of disease, a measure of the growth of the
pathogen, can follow a growth pattern that is similar or dissimilar
to the growth pattern followed by the suscept. Furthermore,
disease progression and plant growth can either be synchronous or
nonsynchronous. Thus, four types of models can be constructed,
their components dependent on the form of disease progression
and plant growth and the temporal relationship between these two
growth patterns. Although many mathematical functions can be
used for simulating their growth, we will limit our study to four
possibilities: the exponential, logistic, monomolecular, and
Gompertz functions (Table 1).

Similar, synchronous disease progression and plant growth.
Assume that both disease progression and plant growth occurina
logistic manner, and that the pathogen initiates the epidemic when
the plant begins its growth. The differential equations describing
their absolute rates of growth are, respectively,

dy/dt = rny(Ki — )| Ki (n
dx/dt=rx(K,—x)| K, , (2)

where ry and r; are intrinsic rates, y is the amount or density of
diseased tissue (e.g., amount of infected leaf area per shoot), x is
plant size or density (e.g., amount of leaf area per shoot), K and K ;
are carrying capacities of the environment, and ¢ is time. To
determine the change in the amount of tissue diseased relative to
the change in the amount of plant tissue, dy/dx, equation 1 is
divided by equation 2 to yield

dy/dx = (dy/dn) | (dx|dt) = [ny KK — 0]/ [r2x Ki(K2—x)].(3)

The terms are rearranged and integration is then performed on
both sides of the equation by expressing the denominators as
partial fractions:

Sty =1 av= g {1k — 01 fax @

TABLE 1. Differential and integral forms of the growth functions used in
the derivation of the composite disease/ plant growth models

Growth Differential Integral
function form" form®
Exponential dzldt=rz z= Ae"

Logistic dz/dt = rz[(K — )/ K] z=K/(1+ Ae ")
Monomolecular dz/dt=r(K— z) z=K(l—Ae ™)
Gompertz dz/dt = rz[In(K) — In(z)] e

“dz/dt is the absolute rate of growth; r is the intrinsic rate of growth; z is
population size or density; Kis the carrying capacity; ¢ is time; and A is an
additional parameter, its meaning dependent on the function,
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[/ (K K2)] | S/ p)dy + ST/ (K = p))dy | =
[1/(r2Ki K2)) {1/ %) + L1/ (K = 2))dx | )

The integrals on both sides are solved by u-substitution, then
equation 5 becomes

—[/(nKiK)]In [(Ki = »)/y]1+ C/(n K K) =
—[1/(rKiK)]In [(K: — x)/x]+ Cof (K K2) (6)

where C, and C; are constants of integration. Solving for y, the
amount of diseased tissue, produces

y=Kj/ i 1+ Cle™1U[(K, — x)[ x]V" l (7

Setting B=e“/e 1?2 and r, = r|/r,, the intrinsic rate of disease
progression relative to plant growth, then equation 7 can be
reparametrized to denote y more clearly as a function of x,

y=K/ {1+ B{(K: — x)/xT#} ®)

Equation 8 can also be derived directly from the integral forms
of equations | and 2, which are, respectively,

y=Ki/(1 +e7) ©
x= Ko/ (1 + e2e™?) (10)

where C) and C; are constants of integration. We begin by solving
equation 10 for time to yield

(== (1/r) In[(K: — x)/ x]+ Ca/ 2. (11

Given that y is a function of 7 in equation 9, y =f{¢), and in equation
L1, ¢ is a function of x, t = g(x), then the composite function y =
f1g(x)] can be readily derived by substituting equation 11 for ¢ in
equation 9:

y=Ki/ | 1+ S nt-tnnitky =151+ eyl | (12)

Simplification of the denominator will eventually produce a
function identical to equation 7. Thus, the derivation of disease
progression as a function of plant growth from the differential
dy/dx is equivalent to the substitution of plant growth for time via
the composite function. Similar, synchronous models were also
derived in the same manner for the other three growth functions
(Table 2).

Dissimilar, synchronous disease progression and plant growth,
In some pathosystems, disease may progress with time in a manner
quite different from the growth pattern of the suscept. As an
example, assume that disease progression can be modeled by the
Gompertz function, whereas plant growth increases in a
monomolecular fashion. The integrated form of these two
functions are, respectively,

y=Ke " (13)

x=Ky(1 — Bye ), (14)

where y is the amount or density of diseased tissue, x is plant size or
density, K; and K are carrying capacities, r, and r» are rate
parameters, and B, =In(K,/yo) and B, =(K; — xo)/ K: for yo and xo
at time ¢ = 0. Given that their growth is synchronous, equation 14
can be solved for time and substituted into equation 13 to yield the
composite function

y= K fitv B)"V 2k = xyy K1 i (15)




Letting B = Bi(1/B:)""'"2 and r, = ri/r:, the function can be
rewritten as

y=Ke ~B(Ky ~ %)/ K3]'® (16)

Another dissimilar, synchronous model also having Gompertz
disease progression but logistic plant growth was derived in the
same manner (Table 2). Note that regardless of the nature of the
suscept’s growth, the general form of the composite model will
resemble the function describing disease progression.

Similar, nonsynchronous disease progression and plant growth.
Nonsynchronous dynamics result when either the pathogen or the
plant begins to grow before the other. A pathogen may initiate its
growth before the suscept while on an alternate host or in a
saprophytic stage. However, by definition disease cannot occur
until suscept tissue is available for infection; plant growth, as our
measure of time, is still set equal to zero. Thus, except for any
buildup of initial inoculum that may occur, such early growth by
the pathogen is inconsequential relative to the progression of
disease on the plant. When plant growth does begin, its dynamics
can be treated as if they were synchronous.

The initiation of plant growth before onset of the epidemic is an
entirely different situation. By starting its growth before the
pathogen, the plant is limiting the total seasonal amount of
susceptible tissue that will be available for infection. In
mathematical terms, the amount of plant tissue present at the
beginning of the epidemic, x’, is subtracted from the total amount
of tissue, x. For example, the term (x — x*) is substituted for x in the
synchronous logistic/logistic model (Eq. 8) to yield

y=Kj {1+ Bl(Ka = (x=x)/(x=x)]*} (A7)

This alteration essentially sets the plant growth clock equal to zero
when disease progression begins, thus synchronizing the two
growth patterns. A requirement of this transformation is that x >
x’, which is reasonable because the pathogen does not incite disease
during the period when x < x’. However, when x = x’, any
nonsynchronous model having either a Gompertz or logistic plant
growth component is undefined; this outcome is also true when x =
0 for the synchronous versions of these models.

Dissimilar, nonsynchronous disease progression and plant
growth. The fourth and final model type involves a combination of

the former two models. First, the dissimilar functions describing
disease progression and plant growth are combined as previously
described to form the single composite function. Then the x — x’
term is substituted for x to allow for any nonsynchronous
dynamics. The nonsynchronous Gompertz/logistic model is
presented as an example of this type of model (Table 2).

MODEL CALCULATIONS

Five of the models were compared graphically for a set of
fictitious amounts of plant tissue ranging from x=1to x=100. In
addition, some of the parameters were altered to examine their
effect on the shape of each function. The calculations were
performed by computer programs written in the language C (5).

Similar, synchronous disease progression and plant growth.
Each of the four parameters in the synchronous logistic/logistic
model were separately altered to examine their effects on the
epidemic (Fig. | A and B). Anincrease in the rate parameter r, from
0.25 to 4 caused the graph to rotate about its point of inflection at x
=50, y =5 (Fig. 1A). Values of r, <1, indicating that the intrinsic
rate of plant growth is faster than the intrinsic rate of disease
progression, causes the curve to be concave down for 0 < x < 50
and concave up for 50 < x < 100. As the difference between these
intrinsic rates lessens, the degree of curvature decreases until the
plot becomes a straight line at r, = |. When r, > 1, the rate of
disease progress exceeds plant growth and the model produces the
typical sigmoid shape. In Figure 1A, the curve for r, = 4 is a
reflection of that for r, = 0.25 with respect to r, = 1.

Anincrease in the parameter Bfrom 0.5 to 2 for the synchronous
logistic/logistic model causes a downward shift in the point of
inflection (Fig. 1B). Although both epidemics eventually attain the
same amount of disease at x = 100, larger values of B ‘delayed’
increase of disease during the epidemic. Decreasing K; and K3
reduces the maximum amount of disease and plant tissue attained
during the epidemic, respectively. In the latter case, disease
increases much more rapidly to its maximum (relative to plant
growth) than it would have if K2 had been much larger: in essence,
increasing K> increases the length of time of the epidemic.

In pathosystems having synchronous monomolecular disease
progression and plant growth, alternation of the relative rate
parameter r, also changes the shape of the curve (Fig. 1C). If the
rate of disease progression is greater than the rate of plant growth,
r, > 1, the curve produced resembles that of an exponential

TABLE 2. Composite disease/ plant growth models derived from various functions

Model type"

Growth functions”

Temporal _
Form relationship Disease/ plant Model”
Similar Synchronous Logistic/ logistic y=K/ l 1+ B[(K:— x)/x]'*
Similar Synchronous Gompertz/ Gompertz y= Fye AnKs s
Similar Synchronous Monomolecular/ monomolecular y=K I 1= B[(K:— x) K2]'® l
Similar Synchronous Exponential/ exponential® y=Bx't
Similar Nonsynchronous Logistic/logistic y=K/ { 1+ B[(K:— (x— x))/(x— x))]% 1
Dissimilar Synchronous Gompertz/ monomolecular y=Ke fltham 0 Ky’
Dissimilar Synchronous Gompertz/logistic y= Kie ™ k=8 '
Dissimilar Nonsynchronous Gompertz/logisitic y= Ke = Bl xm)ite- e

*Similar models have the same function for both disease progression and plant growth, whereas dissimilar models have different functions; nonsynchronous
dynamics result when the plant begins growth before onset of the epidemic; synchronous dynamics result when both disease and plant growth are initiated at

approximately the same point in time.
"The growth functions used in the derivations are presented in Table 1.

“yis the amount or density of diseased tissue; xis the amount or density of plant tissue; r, is the ratio of the rate of growth of disease, ry, to the rate of plant
growth, r2: r, = ri/r2; Ki and K; are carrying capacities of the environment for disease and plant growth, respectively; x"is the amount or density of plant
tissue at the beginning of the epidemic; and B is an additional parameter that has different roles in each model.

“Substituting the power functions y= 81" and x= Byt"?in place of the exponential functions for disease and plant growth, respectively, produces the same

composite model.
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saturation function: a rapid initial increase in disease followed by a
slower increase as dy/dx approaches zero at K, and K>. However,
if 1 <r» thenr, <l and disease increases in an exponential fashion
relative to plant growth. But unlike the exponential function, the
increase of disease is nearly linear for the first half of the epidemic.
If ri = rz, the resulting plot is identical to that produced by the
synchronous logistic/logistic model: a straight line.

The value of the B parameter in the synchronous
monomolecular/ monomolecular model is related to the initial
amount of inoculum, yo. For x =0, yo = Ki(1 — B) or B= (K, —
o)/ Ki. Thus, Bis the amount that disease will increase during the
epidemic. If K, = 10, then B = 1 — yy/10. This latter case is
demonstrated in Figure 1C, where B= 0.7 and y, = 3.

Dissimilar and nonsynchronous disease progression and plant
growth. Synchronous and nonsynchronous forms of the
logistic/logistic and Gompertz/logistic models were compared
(Fig. 1D). Substitution of Gompertz disease progression for
logistic disease progression in the synchronous form of the model
caused an initial delay in the epidemic. This delay occurs because
the term

e ~Bl(Ky—x)/x] g

in the Gompertz/logistic function is initially much smaller in value
than the term

{1+ Bl(K — 0)/x) 0}

in the logistic/logistic function. Because these terms are simply
multiplied by K, to obtain y, lower values of the term yield lower
values of y. However, once the Gompertz/logistic function starts
to increase, it does so rapidly so that it eventually attains the same
level of disease as the logistic/logistic model.

If the dynamics of the above two models are nonsynchronous, as

Y
T T T
D
Y
2r l-!- 3 -4
n 1 i i
o] 25 S0 75 100 O
* *

Fig. 1. Comparison of disease progression/plant growth models and
examination of changes induced by altering model parameters; y =amount
of diseased tissue; x = plant size or density, x’=amount or density of plant
tissue at the beginning of the epidemic; r,=ri/r.= (intrinsic rate of disease
progression)/(intrinsic rate of plant growth); K, and K, are carrying
capacities of the environment for disease and plant growth, respectively; B
is an additional parameter, its function dependent upon the model; values
for the parameters, unless otherwise indicated, are: r, =2, K, = 10, K2 = 100,
and B= 1. A and B, synchronous logistic/logistic model. C, synchronous
monomolecular/ monomolecular model where B=0.999 for the two lower
curves. D, logistic/logistic (——) and Gompertz/logistic (----) models;
synchronous (x"= 0) vs. the nonsynchronous (x’ = 30) model types.
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when disease progression starts at x = x’= 30, the curves are shifted
to the right along the abscissa (Fig. 1D). Although these curves are
identical in shape to their synchronous counterparts, disease does
not progress to the point of reaching its carrying capacity of K, =
10. The plant has reached its carrying capacity first; its growth has
stopped and it is therefore no longer producing susceptible tissue.
A similar outcome also occurs for the logistic/logistic function
with x* = 50 and r, = 0.5. In this situation, nonsynchronous
dynamics and an intrinsic rate of plant growth greater than that of
disease progression combine to produce a curve resembling
monomolecular growth.

IMPLEMENTATION

Units of measurement. All models presented in Table 2, except
the exponential/exponential function, will be dimensionally
balanced regardless of the units of measurement employed for
disease and plant tissue observations. Because K> and x are of the
same units, the terms (K> — x)/ x, (K: — x)/ K2, and In(K3)—In(x) =
In(K:/x)are all unitless. Furthermore, because both r; and r; have
dimensions of 1, the relative rate 7, is also unitless. Thus, the
equations are reduced to the dimensionally balanced situation of y
units = K units. This lack of dependency between the two variables
in terms of their dimensions, however, does not necessarily imply
any measurement combination will be adequate. The measurement
of plant growth in terms of plant height, for example, may be a
poor match for disease measured as the amount of infected tissue
per plant part. The average amount of leaf area per plant part (e.g.,
shoot or branch) would most likely be a better indication of the
production of susceptible tissue and, hence, a more accurate
measure of biological time.

These models were initially conceived and reported as consisting
of two components, one for pathogen growth and one for plant
growth (7). Our interest was in examining how the amount of
disease produced by the pathogen population changed with respect
to plant growth. Thus, this approach necessitated the use of an
absolute measure of disease such as the amount of surface area
infected or the number of pathogen colonies per plant part. The use
of a relative measure of the size of the pathogen population, such as
the proportion of tissue or plant parts diseased, could be
substituted without major mathematical modifications. However,
the interpretation of the model is less clear since this dependent
variable, by definition, includes a measure of suscept growth as its
denominator.

Statistical considerations. Except for the synchronous
exponential/exponential model, the proposed models are not
intrinsically linear; their parameters cannot be made linear by
transformation. Consequently, the fitting of these models to
experimental data necessitates the use of nonlinear regression.
Most methods for estimating the parameters of a nonlinear model,
such as the Gauss—Newton or Marquardt methods, require
determination of the partial derivatives of the function with respect
to each parameter. However, many statistical software packages
now have procedures that will numerically estimate the partial
derivatives, thus eliminating the need for the differentiation.

An examination of the partial derivatives of the functions with
respect to the parameter r, reveals a limitation: The amount of
plant growth cannot be greater than or equal to its carrying
capacity, Kz. For example, for the synchronous monomolecular/
monomolecular model, the partial derivative is

Of1dr,=— KiB[(K: — x)/ K2]"# In[( K2 — x)/ K2] .

Because the techniques employed use an iterative process for
minimizing the residual sum of squares, some intermediate values
of K < x may be used during the fitting procedure. This
inadvertently leads to the logarithm of zero or a negative number,
and thus error statements. The same outcome occurs if the partial
derivatives are numerically estimated. This limitation can be
circumvented by setting the K> parameter equal to the maximum
growth obtained by any one measurement; however, this




observation should not be an outlier. Then either that one
observation can be dropped from the data set or a small fraction
can be added to the value of K so that it would be slightly greater
than the maximum x. In either case, this process effectively
changes K from a parameter to a constant.

DISCUSSION

Plant pathologists have adopted and modified the basic
population dynamics models developed by ecologists for use in the
study of plant disease progression. But unlike the free-living
species studied by most ecologists, plant parasites are inherently
dependent on their hosts for existence. Although various forms of
the Lotka—Volterra equations can be used for modeling symbiotic
relationships (14), we suggest that plant growth itself can be used as
a measure of biological time. This approach assumes that tissue is
susceptible to infection only during the growth phase of the plant
or plant part; Populer referred to this as a Type | pattern of
susceptibility (10).

Given a pathosystem with a Type I pattern of susceptibility, the
models derived in this paper can be employed in one of two ways.
In the first case, plant growth is essentially envisioned as a
substitute for time. Disease progression is a function of plant
growth just as it would be a function of time: No cause and effect
relationship is implied. In the second case, disease progression is
dependent on plant growth. The pathogen can only infect young,
susceptible tissue and its increase is therefore dependent on tissue
production. This second approach has been demonstrated in the
development of anapple powdery mildew model (8). In either case,
the methodology outlined allows for the derivation of many
composite models. For example, assuming the existence of only six
growth functions, then there are 6!/(6 — 2)! = 30 possible
synchronous similar and dissimilar models. A total of 60 models
can be derived if the nonsynchronous forms are included.

The incorporation of plant growth into a model for disease
progression allows for the study of interactions between these two
processes. Jeger (3) proposed a method for examining the effects of
host growth on disease asymptotes. His approach, which involved
“combining equations for increases in leaf area and diseased area,”
would allow for asymptotes less than one when disease is measured
as a proportion. In the models proposed above, the effects of
changes in host growth on the rate of disease progress (relative to
plant growth) as well as on the disease asymptote can be examined.
For example, epidemics caused by the apple powdery mildew
pathogen Podosphaera leucotricha (Ell. & Ev.) Salm. are
dependent on the availability of young tissue (1). The application
of a high nitrogen fertilizer or plentiful rain could raise the growth
rate of the plant, thereby decreasing r,. However, the sudden flush
of susceptible growth would allow the pathogen to increase

rapidly, causing a concomitant increase in r,. Similarly, a larger
carrying capacity of the environment for plant growth should, in
absolute units, produce a larger carrying capacity for the pathogen,
all others factors being equal. This dependence of the pathogen’s
carrying capacity on plant growth can be addressed directly by
making the disease asymptote a function of plant growth. Turner et
al (11) derived a model in which the carrying capacity of a logistic
function is itself growing logistically. Although this approach, like
those proposed above, provide for the effects of plant growth on
disease progression, these models do not incorporate a feedback
mechanism which would allow for a decrease in plant growth as
disease increases.
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