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ABSTRACT

Swallow, W. H. 1985. Group testing for estimating infection rates and probabilities of disease transmission. Phytopathology 75: 882-889.

Group-testing or multiple-vector-transfer designs are shown to be usually
more efficient than testing individuals for estimating p, which isan infection
rate or a probability of pathogen transmission by a single vector. The bias,
variance, and mean-squared-error properties of these designs are explored,
as some understanding of them is essential to choosing experimental designs
that are efficient, convenient, and safe. For the case in which ¥, the number
of tests (or test plants), is limiting, a method is illustrated for selecting &, the
number of individuals per test (group size, vectors per test plant), to obtain a

near-optimal experimental design. For the case in which N > k (the total
number of individuals [vectors]) is limiting, alternative choices of N and k&
are compared. Making an appropriate choice for a particular experiment
requires considering relative costs and convenience. It is important that
treatment differences be judged by comparing estimates of ps, and not by
comparing observed fractions of positive tests, since the latter are functions
of the ks that were used as well as of the treatments; this applies even when
the same value of k is used throughout.

Additional key words: aphid vectors, insect vectors, maximum likelihood estimation, multiple-transfer designs, virus transmission.

An experimental design seen often in studies of insect-vectored
plant diseases involves moving one or more vectors (aphids,
leafhoppers, etc.) from an infected source plant to each of N
noninfected test plants and observing the fraction of the N test
plants developing symptoms of disease. No matter how many
vectors may be transferred to each test plant, the intent always is, or
should be, to estimate
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p = the probability of disease transmission
by a single vector. (n

Inexperiments designed to compare treatments (e.g., virus sources,
recipient test plants, or vectors), comparison of treatments can be
made by comparing estimates of their transmission probabilities
(ps). Of course, one would like to estimate these ps as precisely, yet
cheaply, as possible.

The most straightforward way to estimate p is by single-vector
transfer, that is, by transferring one vector to each of the N test
plants. The estimate of p is then simply the fraction of test plants
that develop symptoms. Indeed, provided N can be increased at
negligible cost, single-vector-transfer designs are always optimal



(16), but it is seldom, if ever, true that very large numbers of test
plants could be used at negligible cost. In practice, the cost of
running the experiment is usually highly correlated with N, and in
many cases N may even be constrained by the availability of
screened cages, glasshouse space, suitable test plants, or some other
factor,

An alternative to a single-vector-transfer design is to use a
multiple-vector-transfer design or group testing, and to move more
than one vector to each test plant. Group testing is not a new idea. It
has a long history of application, particularly by British research
workers (13,18), and its statistical aspects have been discussed by a
number of authors (4,7-9,11.16). That notwithstanding, many
workers have chosen not to use it, giving the weak justification that
it is risky. Properly used, group testing poses minimal risk and, 1
would argue, few experimenters can afford nor to consider using it.
The following is therefore intended to make three important points.
First, in application, some multiple-vector-transfer or group-
testing design will almost always be preferable to a single-vector-
transfer design. Second, the user must take care in the selection of a
multiple-vector-transfer design, as the penalties for a poor choice
can be great. And third, in most cases it is easy to choose a
multiple-vector-transfer design which, though not optimal, is both
safe and a considerable improvement over a single-vector-transfer
design.

ESTIMATION OF INFECTION RATES
AND PROBABILITIES OF DISEASE TRANSMISSION
BY USING GROUP-TESTING DESIGNS

Using Thompson’s (16) notation largely, the basic concept and
formulae of group testing can be summarized as follows. The
probability that any particular vector fails to transmit disease when
moved froman infected source to a test plantis (1 — p). If k vectors
are moved to the same test plant and they act independently, the
probability that none of the & vectors transmits disease is (1 — p)*,
the product of k probabilities, each being (I — p). Thus, when &
vectors are placed on each test plant,

(1 = p)* = the probability a particular test plant is not infected

= the expected fraction of noninfected test plants.

If we define
H = the observed fraction of healthy or noninfected test plants,
then H is an estimator of (1 — p)*, that is,
A
(1—pY=H,
from which one obtains the usual estimator of p,
p=1—H" (2)

This estimator is the maximum likelihood (ML) estimator of p:
that is, of all values that p could assume, p» is the one that maximizes
the probability or likelihood of the observed data, H. Put another
way, the observed fraction of healthy or, equivalently, infected
plants was more likely to have been observed when p = p than
when p equalled any other value.

The importance of using p, rather than H itself, is that / depends
on k as well as on the treatment being tested. Results of tests (of the
same or of different treatments) which used different ks can be
compared directly through their ps, but not through their Hs (the
raw data). Even when the same k> 1 has been used for two or more
treatments, direct comparison of Hs or (I — H)s, fractions of
healthy or of infected plants, respectively, is misleading. For
example, suppose we wish to compare virus-resistance in two
cultivars (same virus source, same vector) for which the true ps are
p1=0.05and p. = 0.10. From p2/p, = 2, we would say that the
second cultivar is twice as susceptible as the first. Yet, if we use
k = 5vectors per test plant, the expected fractions of healthy plants

inthe two groupsare E(H,) = 0.77 and E( H>) = 0.59 from the fact
that the expected value of His E(H) = (1 — p)!, giving a ratio of
expected fractions of infected plants equal to (1 —0.59)/(1 —0.77)
= 1.78. If we instead use k = 10 throughout, analogous
calculations give E(H,) = 0.60 and E(H:) = 0.35, and a ratio of
expected fractions of infected plants equal to 1.63. Thus, if we base
our conclusion about relative susceptibility to infection on the ratio
of fractions infected, that conclusion will be dilferent with k = 5
than with &k = 10. In fact, any conclusion about relative
susceptibility which is based on comparing Hs or (1 — H)s will in
part be determined by the value of k used, and that value of k is
often chosen somewhat arbitrarily. Comparison of treatments
through their ps avoids this problem. Furthermore, as is shown
below, in many experiments it is more appropriate to use different
values of k for different treatments, according to their ps.

Although H is an unbiased estimator of (I — p)*, bias is
introduced in the taking of the kth root, so p is a biased estimator of
p (except when k = 1). The bias, the difference between the
expected or average value of the estimator in repeated application,
E(p), and the true value of p, can be written as

Bias(p) = E(p) — p. (3)

in which

N X ik
E®)=I—iﬁﬂ (%{) (:,V)[(I'—plk]"[l—(l—p)*]"‘. (4)

The variance of p can then be expressed as

Variance(p) = E[p — E(p)]’ (5)

= gﬁ (;\-{)_ (?{) [(T=pYT[1=(=p)]¥ P =T1— E(f;)]:. (6)

Although pitself depends on the fraction of healthy test plants, H,
and not on N per se, increasing N reduces the variance of p. The
calculations of equations 4 and 6 are cumbersome and should be
done by computer for all but tiny examples: those equations are
given here only to indicate how values reported below may be
obtained.

For a biased estimator, mean squared error (MSE) is a more
appropriate measure of goodness than is variance. The MSE of p is

Elp—pT 7)
Variance(p) + [ Bias(p)]’.

MSE(p)

MSE(p) is the average squared deviation of p from the true p,
whereas Variance(p) is the average squared deviation from the
(biased) expected value of p. For an unbiased estimator, the
expected value of the estimator equals the true value of the
parameter being estimated, so the variance and MSE are the same.

Asequation 7 indicates, MSE incorporates measures of both the
accuracy (bias) and precision (variance) of the estimator. The MSE
will be small only when the estimator is both accurate (small bias)
and precise (small variance).

The bias, variance, and MSE of p are complicated functions of p,
k, and N, as is evident from equations 4 and 6. However, it is
important to have some understanding of the nature of their
interrelationships. Figs. 1-3 illustrate the interrelationships for
N = 25, taken as a typical example.

Bias. Fig. 1 illustrates the bias when N = 25and k = 1,2,3,4,5,
7, 10, 15, and 25, by plotting the mean or expected value of the
estimator, E(p), versus the true p. When k = 1. p is unbiased [i.e.,
E(p) = p]and Fig. | shows a straight diagonal line. When k& >1,
the estimator has positive bias (2,16), that is, p overestimates p.

As Fig. | shows, the bias is strongly dependent on the value of k.
When k = 2, the bias is never very great, and is negligible as long as
p is less than about 0.5. When k = 25, the bias is negligible when
p <0.06, but may be huge for larger p. Intermediate values of k
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have intermediate curves. Two important points emerge. First,
choosing k& too large must be avoided. For example, if p = 0.3, we
would want k <5 to keep Bias(p) small. Second, even when p is
quite large (up to about 0.5 for N = 25) there is some k =1 for
which the bias is negligible. Since p is likely to be small in practice, it
should be easy to choose & >1 for which Bias(p) is negligible.

As one would expect, for larger N, the curves for these same
k-values diverge less from the diagonal line and the region of
negligible divergence extends to larger values of p; that is, the
regions of negligible bias are larger. For smaller N, the regions of
negligible bias are smaller, and more care must be exercised in
choosing k.

There seems to be no generally satisfactory way to correct for the
bias in p» (7). One should simply choose a value of k for which the
bias is tolerable,

Variance. Fig. 2 shows the variance of the estimator plotted
against the true value of p for various values of k. The symmetric
solid curve is for k = 1. Our principal interest is in seeing where
curves for k >1 lie below that for & = 1. The peaks of curves for
k =2 have been cropped, therefore, to allow “blowing up™ the more
interesting lower portion of the plot, which is what is shown as Fig.
2.

Fig. 2 offers clear evidence that choosing & simply to minimize
the variance of p, a common optimality criterion for unbiased
estimators, would be disastrous. For example, when p = 0.3, the
variance of p would be minimized by taking k = 25 (among the
values of k shown in Fig. 2), since that curve is the lowestatp = 0.3.
But the bias would be huge, as is seen from Fig. | [Bias(p)
= E(p)—p=1.0-0.3=0.7, approximately]. The reason the
variance is small for large £ with even moderate p is that, when k is
sufficiently large (how large depends on p), all test plants almost
always become infected, giving small variance. Of course, values of
k that yield badly biased ps are undesirable.

Mean squared error. Fig. 3amalgamates the information in Figs.
land 2, plotting MSE(p) versus the true value of p. As noted below
equation 7, mean squared error incorporates both bias and
variance, and will be inflated by either large bias (inaccuracy of the
estimator) or large variance (poor precision),

Fig. 3 prompts several comments. First, when p is small, as is
likelyin practice, taking k =1 rather than k = | can greatly reduce
the MSE, often manyfold. Second, the smaller the value of p, the
larger the optimal k. Third, even where in the figure £ = 15 or
k = 25is optimal (p =<0.08), most of the reduction in MSE can be
realized with a smaller k, say, k = 5. And fourth, although group
testing is often discussed as being appropriate when p is very small,
and indeed its benefits are greatest then, it is useful for larger p than
is often supposed. In the case shown here (N = 25), group testing
(k >1) is preferable to single-vector transfer (k = 1) for all p
between 0 and 0.58.

DESIGN CONSIDERATIONS

When N is fixed. The classic context for group testing is when N
is considered fixed and the experimental design question is “What
is the optimal k7" This situation arises either when N is set by, say,
the number of test plants one can accommodate, but k can be
whatever value the experimenter wishes, or when experimental
costs (time, cost of laboratory analyses, etc.) are principally
determined by N, not k, so N is more or less fixed by the budget.

Table 1 gives the following for a broad range of combinations of
p and N: k*, the value of & that is optimal in the sense that it
minimizes MSE(p); the bias and MSE of p when k = k*[Bias(p:k*)
and MSE(p:£*)]; and, for comparison, the MSE of p when k = |
[MSE(p:1)]. For example, when p = 0.05 and N = 25, Table 1
indicates that the optimal number of vectors per test plant is
k* = 18 for which Bias(p) = 0.0016 and MSE(p) = 0.000200; if
k =1 had been used instead, p would have had MSE(p)
= 0.001900, which is 9.5 times the minimum value realized with k *.
For k = 1, Bias(p;1) = 0 always. The column labeled N = 200 can
be used for any N >200. Table | is based on calculations using
equations 4, 6, and 7 for k=1 to 25 by I, and 25 to 50 by 5.
Recorded values of k* greater than 25 are correct to within 5,
except that k* = 50 is the largest value considered. This degree of
uncertainty about the exact value of k* =25 is of no practical
concern, as will become clear. Portions of Table 1 are available
elsewhere (8.9.11).
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Fig. 1. Expected value (mean) of the maximum likelihood estimator (77) of the infection rate or probability (p) of disease transmission by a single vector versus
the true value of p for tests employing & = | to 25 vectors per test plant with N = 25 test plants,
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Comparison of MSE(p:k*) with MSE(p:1) shows the gains
attainable with group testing. When p is small, MSE(p:1) is often
10-20 times the minimum MSE, MSE(p:k*). Increasing N reduces
both MSE(p:k*) and MSE(p:1), but increases the relative
advantage of group testing. For example, when p = 0.05 and
N =25, MSE(p;1)/ MSE(p:k*) = 0.001900/0.000200 = 9.5, but
when N = 50 the ratio is 0.000950/0.000084 = 11.3, and when

N = 100 the ratio is 11.9. Of course, increasing N changes k *, too.
As Table | also shows, the bias in p when the optimal k is used is
never large, and decreases with increasing N (i.e., across a row of
the table).

To reduce MSE(p) with a single-vector-transfer design (k = 1),
one must double N to halve MSE(p). This follows from the fact
that, for the special case when k = |, equation 6 simplifies

TABLE 1. Optimal number of vectors (k *) per plant to use in estimating infection rate or probability (p) of disease transmission by a single vector, when the
number of test plants (N) is fixed, and the bias [Bias(p:k*)] and mean squared error (MSE) of the estimator of p for k* [MSE(p:k*)] or one vector
[MSE (p:1)] per test plant

N
p 10 5 20 25 30 40 50 60 80 100 200
0.01k* 35 50 50 50 50 50 50 50 50 50 50
Bias(p:k*)  0.0007  0.0005  0.0003  0.0003  0.0002  0.0002  0.0001 0.0001 0.0001 0.0001 0.00003
MSE(p:k*) 0.000046  0.000021  0.000014  0.000011  0.000009 0.000007 0.000005 0.000004  0.000003  0.000003  0.000001
MSE(p;1)  0.000990  0.000660  0.000495  0.000396  0.000330  0.000248  0.000198  0.000165 0.000124  0.000099  0.000050
0.02k* 19 30 35 40 45 50 50 50 50 50 50
Bias(p:k*)  0.0013  0.0010  0.0008  0.0006  0.0006  0.0004  0.0004  0.0003  0.0002  0.0002 0.0001
MSE(p:k*) 0.000162  0.000078  0.000048  0.000035  0.000027  0.000019  0.000015  0.000012  0.000009  0.000007  0.000003
MSE(p;1)  0.001960  0.001307  0.000980  0.000784  0.000653  0.000490  0.000392  0.000327  0.000245  0.000196  0.000098
0.03k* 14 20 25 30 30 35 40 45 45 45 50
Bias(p:k*)  0.0020  0.0014  0.0012  0.0010 00008  0.0007  0.0006  0.0005  0.0004  0.0003 0.0002
MSE(p:k*) 0.000337  0.000164 0.000104 0.000076  0.000059  0.000041  0.000031  0.000025 0.000018  0.000015  0.000007
MSE(P:;1) 0.002910  0.001940  0.001455  0.001164  0.000970  0.000728 0.000582  0.000485 0.000364  0.000291  0.000146
0.04k* 1 16 19 2 25 30 30 35 35 35 35
Bias(p:k*) 0.0026  0.0019  0.0015  0.0013 00012 00010  0.0008  0.0007  0.0006  0.0004 0.0002
MSE(p:k*) 0.000565  0.000281  0.000180  0.000131  0.000102  0.000072  0.000055 0.000045 0.000032  0.000026  0.000012
MSE(®;1)  0.003840  0.002560  0.001920  0.001536  0.001280  0.000960  0.000768  0.000640  0.000480  0.000384  0.000192
0.05k * 9 13 16 18 20 23 25 25 25 30 30
Bias(p:k*)  0:0032  0.0024  0.0020  0.0016  0.0015  0.0012  0.0010  0.0008  0.0006  0.0006 0.0003
MSE(p:k*) 0.000842 0.000424 0.000274 0.000200  0.000157 0.000110 0.000084  0.000069 0.000050 0.000040 0.000019
MSE(p;1)  0.004750  0.003167  0.002375  0.001900  0.001583  0.001188  0.000950  0.000792  0.000594  0.000475  0.000238
0.06k* 8 1 13 15 17 19 21 22 23 23 24
Bias(p:k*) 0.0038  0.0028  0.0023  0.0019 00018 00014 00012 00010  0.0008  0.0006 0.0003
MSE(@:k*) 0.001158 0.000592 0.000385 0.000282  0.000222  0.000156  0.000120  0.000098  0.000071  0.000056  0.000027
MSE(@;1)  0.005640  0.003760  0.002820  0.002256  0.001880  0.001410  0.001128  0.000940  0.000705  0.000564  0.000282
0.08k* 6 9 10 12 13 Is 16 16 17 17 I8
Bias(p:k*) 0.0048  0.0038  0.0030  0.0027  0.0023 00019  0.0016  0.0013  0.0010  0.0008 0.0004
MSE(@:k*) 0.001922  0.001002  0.000656 0.000484  0.000382  0.000269  0.000208  0.000170  0.000124  0.000097  0.000047
MSE(@;1)  0.007360  0.004907  0.003680  0.002944  0.002453  0.001840  0.001472  0.001227  0.000920  0.000736  0.000368
0.10k* 5 7 8 9 10 12 12 13 13 14 14
Bias(p:k*) 0.0057  0.0045  0.0036  0.0031 0.0027  0.0023  0.0018 00016 00012  0.0010 0.0005
MSE(p:k*) 0.002807  0.001482  0.000987  0.000732  0.000579  0.000409  0.000317  0.000258  0.000189  0.000149  0.000072
MSE(pk*) 0.009000  0.006000  0.004500  0.003600  0.003000  0.002250  0.001800  0.001500 0.001125  0.000900  0.000450
0.15k* 4 5 6 6 7 8 8 8 9 9 9
Bias(:k*) 0.0086  0.0064  0.0054  0.0042 00040  0.0033 00026 00022  0.0018  0.0014 0.0007
MSE(p:k*) 0.005409 0.002976 0.002014 0.001516 0.001202  0.000858  0.000665 0.000544  0.000398  0.000314  0.000152
MSE(p;1)  0.012750  0.008500  0.006375  0.005100  0.004250  0.003188  0.002550  0.002125 0.001594 0.001275  0.000638
0.20k* 3 4 4 5 5 6 6 6 6 7 7
Bias(p:k*) 0.0099  0.0083  0.0059  0.0058  0.0047  0.0042  0.0033  0.0027  0.0020  0.0019 0.0009
MSE(p:k*) 0.008356  0.004764  0.003284  0.002459  0.001975  0.001416  0.001100  0.000901  0.000662  0.000523  0.000253
MSE(p;1)  0.016000 0.010667  0.008000  0.006400  0.005333  0.004000  0.003200  0.002667  0.002000  0.001600  0.000800
0.25k* 3 3 3 4 4 4 5 5 5 5 5
Bias(p:k*) 0.0146  0.0085  0.0062  0.0067  0.0055  0.0040  0.004 0.0034  0.0025  0.0020 0.0010
MSE(p:k*) 0.012089  0.006652  0.004735  0.003514  0.002831  0.002056  0.001597  0.001306  0.000959  0.000757  0.000370
MSE(p:1)  0.018750  0.012500  0.009375  0.007500  0.006250  0.004688  0.003750  0.003125  0.002344  0.001875  0.000938
0.30k* 2 3 3 3 3 4 4 4 4 4 4
Bias(p:k*) 0.0104 0.0118 0.0083 0.0064 0.0053 0.0056 0.0044 0.0036 0.0027 0.0021 0.0011
MSE(p:ik*) 0.014516  0.008861  0.006000  0.004616  0.003769  0.002716  0.002114  0.001733  0.001276  0.001009  0.000494
MSE(p;1)  0.021000  0.014000  0.010500  0.008400  0.007000  0.005250  0.004200  0.003500  0.002625  0.002100  0.001050
0.40k * 2 2 2 2 2 3 3 3 3 3 3
Bias(p:k*) 0.0169  0.0100  0.0072  0.0056  0.0047  0.0065  0.005 0.0042  0.0031 0.0025 0.0012
MSE(p:ik*) 0.020264 0.011981  0.008632  0.006780  0.005589  0.004032  0.003143  0.002580  0.001902  0.001506  0.000739
MSE(p;1)  0.024000  0.016000 0.012000  0.009600  0.00800  0.006000  0.004800  0.004000  0.003000  0.002400  0.001200
0.50k* | 2 2 2 2 2 2 2 2 2 2
Bias(pik*)  0.0000  0.0157  0.0108 00082  0.0067  0.0049 00039 00032  0.0024  0.0019 0.0009
MSE(p:k*) 0.025000  0.015722  0.01759  0.008247 0006722  0.004932  0.003901  0.003228  0.002400  0.001911  0.000946
MSE(p;1)  0.025000 0.016667 0.012500 0.010000 0.008333 0.006250 0.005000 0.004167 0.003125 0.002500 0.001250
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tremendously to example, it can be used to show that to obtain an equally good p
(equal MSE) as realized with the optimal multiple-vector-transfer

Variance(p) = p (1 = p)/N (8) design with ¥ = 25 and p = 0.05 [MSE(p) = 0.000200], a single-

vector-transfer design would require N = 238 [using equation 8

whichis MSE(p)also, since Bias(p) = 0. Equation 8 is helpful. For and solving 0.000200 = 0.05(1 — 0.05)/ N, in which p = 0.05]. The

~

Variance of Estimator p

0.0 0.1 8.2 0.3 0.4 8.5 8.6 0.7 8.8 0.9 1.8
True Value of p

Fig. 2. Variance of the maximum likelihood estimator () of the infection rate or probability (p) of disease transmission by a single vector versus the true value
of p for tests employing k = | to 25 vectors per test plant with N = 25 test plants.
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Fig. 3. Mean squared error of the maximum likelihood estimator () of the infection rate or probability (p) of disease transmission by a single vector versus
the true value of p for tests employing k = | to 25 vectors per test plant with ¥ = 25 test plants.
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optimal multiple-vector-transfer design with k* = 18 would have
used 18 X 25 = 450 vectors, not 238, but we are assuming at the
moment that N, not k, determines the cost or is otherwise difficult
to increase. By this method one can determine, for any of the
multiple-vector-transfer designs of Table I, the N needed to obtain
as good a p using k = 1. These calculations can be quite startling,
especially for a small p.

The expected fraction of infected plants is E(l — H)
=1—E(H)=1- (1 — p)* Even for the optimal designs given in
Table I, this ranges from 0.30 t0 0.79, and depends on p and k. For
example, when p =0.04 and N =25, it equals
I = (1 = 0.04)” = 0.59, in which k* = 22 from Table 1. For the
designs in Table 1, the expected fraction of infected plants is highest
when both p and N are small, and decreases as either p or N
increases. Of course, in any application the observed fraction of
infected plants will vary around the expected fraction.

Although Figs. 1-3 and Table | illustrate many of the key points
in the theory of group testing, the discussion based on them has
glossed over one point that is critical in application, namely, that p
is unknown. In practice, one must choose an appropriate & for an
experiment without knowing p. In effect, one wants to use Table 1
to choose the optimal k, but doesn’t know which row of the table to
enter. A very workable solution is to enter Table | with Nand p., a
value which is believed to be an upper bound for p (16). For
example, if one feels reasonably confident that the unknown p is in
the range 0.01 to 0.10, then one can enter Table | with p. =
0.10 to obtain a value of k for the proposed experiment. Often
one already has enough preliminary data or other information to
do this. If not, a small trial can be run to get a rough estimate of p:
using some small k& >1 in this preliminary trial is generally
advisable, both for increased efficiency (versus using k = 1) and
because any bias introduced thereby, being positive, can only lead
to overestimation of p, making the choice of p. more conservative
M.

The reason for taking p. = p is illustrated in Table 2 for a
hypothetical example in which N = 25 and the true (unknown in
practice) p = 0.10. As Table 2 indicates, if, in planning the
experiment to estimate p, one serendipitously enters Table | with
pe = 0.10 (the true p), one is told to use k = 9, the optimal value
since p. equals the true p, for which MSE(p) = 0.0007. If one enters
with p. = 0.20, one is told to use k =5 for which MSE(p)
= 0.0010, and so forth. Although p. determines the value of k to be
used, the associated bias and MSE values shown in Table 2 are
calculated using the true p = 0.10, not p., with that k; they could
not be calculated in practice, since the true p would be unknown.

One sees from Table 2 that when p. exceeds the true p, a smaller
than optimal k is used, but most of the potential gains of group
testing are still realized. For example, when p. = 0.20, twice the true
p, MSE(p) = 0.0010, which differs little from the minimum
MSE(p) = 0.0007, and is still less than 30% of the value
MSE(p) = 0.0036 for k = 1. Using p. too large leads to a smaller
bias than that found with the optimal k. On the other hand, usinga
pe much smaller than the true p leads to using k too large, with p
then suffering from (perhaps greatly) increased bias and MSE.
Although, ideally, one would like p. as close to the true p as
possible, if in doubt, take p. too large for a conservative choice of k.

Thus, in application, one cannot determine the optimal k, since
to do so one must know p, the probability to be estimated.
However, by using Table | as suggested, with a sensibly chosen p.,
it is easy to select a multiple-vector-transfer design (k >1) which is
more efficient than a single-vector-transfer design. The smaller p is,
the larger the gain in efficiency is likely to be. The only risk is in
using p. too small and, thereby, k too large. Knowing that, the user
can keep the risk small by a conservative choice of p. or,
equivalently, k.

A brief comment should be made about available asymptotic
results, and a warning given to potential users. These results appear
in a number of references (8,9,14,16), usually with appropriate
cautions, but their simplicity makes indiscriminate use overly
tempting. Roughly speaking, asymptotic results are results that are
correct with infinite sample sizes (there may be other conditions
which must be met, too), and may be approximately correct and

thus useful with smaller sample sizes. The asymptotic result that is
relevant here is this: when N is sufficiently large and k is large
relative to p (the latter condition being satisfied in most
applications of interest), then the optimal k is approximately
k = 1.5936/p. But how large an N is “sufficiently large” for this
asymptotic result to be reasonably accurate? The answer is *Larger
than the values of N commonly used, unfortunately!” Values of
k = 1.5936/p are larger than the values of k* given under N = 200
in Table 1. For N <25, and perhaps larger, these values of k are
clearly too big, especially when p is small. They often greatly exceed
the k* values in Table 1. Using the asymptotically optimal k when
one has only moderate sample sizes (V) always leads to adopting
too large a value of k and, as has already been shown, this is exactly
what we wish to avoid. The user is better advised to use results
based on exact calculations (using equations 4 and 6), as in Table |,

When N X k is fixed. A less common situation, but one which
also occurs, is that in which it is more appropriate to think of the
number of vectors (N X k), rather than the number of test plants
(N), as fixed. Perhaps the number of available vectors is limited, or
labor constraints (time or cost) determine that only a certain
number of vectors can be transferred. The problem is then to
choose both N and & such that the product, N X k, equals the
predetermined value.

As mentioned earlier, if costs are unrelated to N (orare ignored),
then k = lisalways optimal. Thatis, it will always be best to use N
test plants with k = | vector per test plant, and the reason can be
seen intuitively as follows. When k& = I, we determine for each
vector whether it has transferred the disease. When k >1, an
infected plant indicates that one or more of the k vectors has
transmitted the disease, but there is uncertainty as to whether
exactly one or more than one vector transmitted the disease. This
uncertainty is the price paid by the multiple-vector-transfer
design—the single-vector-transfer design provides more precise
information. Extending this argument, the smaller the value of p,
the smaller is the relative likelihood that more than one of k, rather
than exactly one of k, caused a plant to become infected. In other
words, the smaller p is, the more certain it becomes that an infected
plant was infected by only one of the k vectors and, therefore, the
less bias there is in p.

However, costs cannot be ignored altogether. Even when costs
cannot be calculated precisely, some choices of Nand k will appear
more cost-efficient, or at least more convenient, than others. Table
3 gives MSE(p)s for combinations of several values of p with some
possible choices of Nand k for which (NX k) = 100, 500, 1,000, or
2,000. This allows comparison of different ways of allocating N X k
vectors to N test plants with k vectors each. The minimum MSE(p)
when N X k is fixed is always attained with k = I, as discussed
above. However, especially when p is small, other allocations yield
MSE(p)s which differ little from the minimum. For example, when
(NX k)= 500and p = 0.01, the estimate of p based on k = | and
N =500 is only slightly better than that based on k = 25 and
N = 20, but uses 25 times as many plants. When (N X k) = 500 and
p = 0.05, MSE(p) with &k = 20 and N = 25 is about twice that for
k = land N = 500, but requires one twentieth as many test plants.

TABLE 2. Example showing the relationship between the value (p.) used to
enter Table 1, and the bias [ Bias(p)] and mean squared error [ MSE(p)] of
the resulting estimator of infection rate or probability (p) of disease
transmission by a single vector, when N = 25 test plants are used and the
true p = 0.10

Pe k from Table | Bias(p) MSE(p)
0.02 40 0.6123 0.5584
0.04 22 0.0695 0.0611
0.06 15 0.0075 0.0033
0.08 12 0.0041 0.0009
0.10 (true p) 9 0.0031 0.0007
0.15 6 0.0023 0.0009
0.20 5 0.0021 0.0010
0.25 4 0.0018 0.0011
k=1 0 0.0036
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1 have considered two basic cases (N fixed and NX & fixed) both
because each of these cases occurs in practice, and because cachisa
convenient vehicle for illustrating some of the principles of group
testing. However, many experiments do not fall neatly into either
case. Perhaps N is fixed, but costs also depend on k. Tables |
and 3, and the principles they elucidate, can still be exploited in
arriving at a sensible experimental design. The tables can be used
directly, or the researcher can, starting with values given in Tables |
and 3, compare an even wider variety of possible designs by making
some additional simple calculations. In doing so, the following fact
is useful: starting with a design in Tables | or 3 and holding &
constant, increasing N will decrease MSE(p) at least
proportionally. Forexample, doubling N will reduce MSE(D) by at
least half. When k >>1 this is conservative, because MSE(p)
decreases proportionally faster than N increases. [ Note that going
the other way (decreasing N) poses some risk. When k =1, halving
N more than doubles MSE(p), markedly so when Nis small.] Thus,
continuing the last example of the previous paragraph, it would be
expected that doubling N would achieve with k = 20 and N = 50,
approximately the same MSE(p) as with k =1 and N = 500.
Compared tousingk = 1 and N = 500, this requires twice as many
vectors, but only one tenth as many test plants. [In this case, the
value MSE(p) = 0.000088 for k = 20and N = 50 appears in Table
3 under (N X k) = 1,000]. After comparing a variety of alternative
designs, the researcher can choose an appropriate design given the
ways cost and convenience depend on N and k for the particular
experiment.

Biological considerations and statistical assumptions. | have
focused thus far on statistical considerations in choosing k, without
reference to biological considerations. In fact, the two are closely
interrelated. The following brief comments are meant only to
suggest the kinds of issues involved; the issues are important, but
the specifics depend on the particular application.

A key assumption in the theory of multiple-vector-transfer
designs is that each of the k vectors transferred to a particular test
plant transmits the virus with probability independent of k, the
number of vectors on that plant. For most aphid-vectored plant
virus diseases, for example, the weight of evidence is that this
independence assumption is valid (3,15,18). However, in some

applications one may have to impose a limit on k if the notion of
independently operating vectors is to be plausible (4,16). For
example, it may be that the behavior of the vectors is altered in
some important way when their density on the plantis too great, or
the response of the plant itself may be affected. This is another
reason to use a value of & which is perhaps smaller than the
statistically optimal one, and a reason why values of k >50 were
not considered in constructing Table [.

Another assumption, usually less important than that of
independent action, is that each vector has the same probability of
transmitting the disease. This requires appropriate standardization
of exposure to the disease source and opportunity to infect the test
plant. If, for example, certain leaves of the test plants are more
susceptible than others, then this should be considered in the
experimental design.

CONFIDENCE INTERVALS

For a single p. An approximate confidence interval for p can be
constructed from the point estimate, p, as

-.....,-l-"'-"‘---‘-
p + z [Variance(p)]'?, ©)

in which, for a 95% confidence interval, z equals 1.96, the value of
the standard normal random variable (Z) which is exceeded with

probability 0.05/2 = 0.025. Variancc.(‘f;), the estimated variance of
P, can be obained as

ariance() = [1 - (1 — pFUINK(1 = py-2). (10)

Equation 10 follows from the asymptotic variance of p (16), but is
satisfactory for the combinations of N, p, and k of Table I, or for
those Nand p withsmaller k. One can also estimate Variance(p) by
using equations 4 and 6 with p in place of p on the right-hand sides
of those equations, but the gain is not enough to justify the
considerable extra effort. The confidence interval from equation 9
will be approximate in any case, because p is not normally
distributed; the approximation improves with increasing N.
Construction of exact confidence intervals is very tedious, but has
been done for a few special cases (4).

TABLE 3. Values of the mean squared error [MSE(p)] of the estimator of infection rate or probability (p) of disease transmission by a single vector, for
combinations of values of p with some alternative choices of the number of test plants (V) and number of vectors (k) per test plant for which (N X k) = 100,

500, 1,000, or 2,000

P
NXk k N 0.01 0.05 0.10 0.20 0.30
100 1 100 0.000099 0.000475 0.000900 0.001600 0.002100
2 50 0.000101 0.000493 0.000962 0.001828 0.002601
4 25 0.000104 0.000535 0.001120 0.002543 0.005080
5 20 0.000106 0.000560 0.001224 0.003365 0.017278
10 10 0.000116 0.000851 0.012960 0.206815 0.370598
20 5 0.000345 0.098504 0.424224 0.604807 0.488246
500 1 500 0.000020 0.000095 0.000180 0.000320 0.000420
5 100 0.000020 0.000107 0.000228 0.000542 0.001039
10 50 0.000021 0.000126 0.000327 0.003535 0.117996
20 25 0.000023 0.000207 0.032273 0.479741 0.480773
25 20 0.000024 0.001609 0.182826 0.593906 0.488781
50 10 0.000123 0.405333 0.769364 0.639912 0.490000
1,000 1 1,000 0.000010 0.000048 0.000090 0.000160 0.000210
5 200 0.000010 0.000053 0.000113 0.000267 0.000501
10 100 0.000010 0.000062 0.000157 0.000624 0.029329
20 50 0.000011 0.000088 0.001623 0.358913 0.471420
25 40 0.000012 0.000111 0.041524 0.550674 0.487520
40 25 0.000013 0.029133 0.558438 0.637927 0.489993
50 20 0.000014 0.182045 0.730651 0.639823 0.490000
2,000 1 2,000 0.000005 0.000024 0.000045 0.000080 0.000105
10 200 0.000005 0.000031 0.000077 0.000285 0.002656
20 100 0.000006 0.000042 0.000170 0.201033 0.453108
25 80 0.000006 0.000050 0.002366 0.473295 0.484978
40 50 0.000006 0.001031 0.384830 0.635836 0.489986
50 40 0.000007 0.036797 0.658927 0.639644 0.490000
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It should be noted that when none or all of the test plants become
infected (H = 1 or0,p = 0 or 1), one cannot estimate Variance(p).
Choices of N and k& which are likely to yield such data should be
avoided.

For a difference between ps. Many experiments are run to
compare two or more treatments, in which case there will be one p
to estimate for each treatment. One need not use the same value of &
or of Nforall treatments in estimating these ps. Indeed, it may be
inappropriate to do so, since good choices of k and N depend on p,
and it may be known (or strongly suspected) in advance that
different treatments have ps of different magnitudes. When all
treatments are viewed as equally important or interesting, one may
choose tostrive for ps withapproximately equal MSEs. Or, if some
treatments are of greater importance than others, available
resources can be deliberately allocated unequally to provide better
estimates for the more important treatments.

An approximate confidence interval for the difference between
piand p: can be calculated as

(P —i;a}iz[mnml]' (1)

Anapproximate two-tailed test of hypothesis regarding equality of
pirand p: follows. If the 95% confidence interval includes the value
zero, then py and p: are declared to be not significantly different at
the 5% level of significance. Otherwise, they are declared to be
different. This can be done for any or all pairs of ps. [Although a
detailed discussion is beyond the scope of this paper, 1 note in
passing that available data sometimes provide more than one p for
each of some or all of the treatments. In that case, one may wish to
use analysis of variance on the collection of ps (with weighting or
after appropriate transformation, if necessary) to test treatment
differences.]

EXTENSIONS AND RELATED PROBLEMS

Briel mention should be made of several extensions of the group-
testing model which deal with more complicated problems. First,
results have been obtained for the case in which different values of &
(pool size) have been used on subsets of the N test plants (pools)
that will be used to estimate a single p (4,10,17). As this complicates
the problem considerably, 1 recommend using the same k within
any group of test plants, if possible. Second, Sobel and Elashoff
(14) have considered models that are applicable when the same
individual can be retested in more than one pool. Retesting is
usually not possible in vector-transfer designs, but may be in other
contexts, for example, where portions of the sample from an
individual can be entered into different pools. Third,
Bhattacharyya et al (2) have considered finite population models.
In most experiments, including vector-transfer designs, the
population is viewed as infinite (conceptual, not real).

Although the presentation above is in the context of vector-
transfer designs, the discussion, tables, and figures have broader
applicability. For example, in estimating the fraction of a human
population that has been exposed to a rare viral disease, one may
wish to test for prevalence of antigen in pooled blood samples, each
sample containing blood of k individuals. Or, in determining the
proportion of vectors carrying a virus, one may want to test pools
of k vectors each (perhaps with ELISA), rather than test individual

vectors, to control laboratory costs. The problem is the same—to
choose the optimal k.

Other applications are closely related, but less obviously so
(12,16). One example is estimation of bacterial densities by the
standard “most probable number,” whereby a solution containing
bacteria is diluted, and unit volumes are plated, cultured, and
classified as containing bacteria or not (5,6). A second is grid
sampling to estimate the density of a plant species (or of infected
plants) by recording its presence or absence in each of a number of
randomly selected quadrats (squares of the grid) (1). Although
solutions to these problems are customarily formulated by using
models based on the Poisson distribution, and the group-testing
model is based on the binomial distribution, when p is small relative
to k, the Poisson and binomial are nearly indistinguishable. Thus,
choosing the optimal k for group testing is analogous to choosing
the optimal dilution factor for estimating bacterial density, or the
optimal grid size for estimating plant density.
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