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ABSTRACT

Park, E. W.,and Lim, S. M. 1985. Empirical estimation of the asymptote of disease progress curves and use of the Richards generalized rate parameters for

describing discase progress. Phytopathology 75: 786-791.

The effect of fixing the asymptote parameter of growth functions at 1 on
estimates of the rate parameter and the use of generalized rate parameters
proposed by Richards are discussed. When disease progress curves have
asymptotes which are less than I, the asymptote parameter of growth
functions needs to be estimated empirically; otherwise, underestimation of
the rate parameter of growth functions (e.g., Vanderplank’s apparent
infection rate, ) and changes in the rank of estimates of the rate parameter
may result from [ixing the asymptote parameter of growth functions at 1.
The use of the weighted mean absolute growth rate and the weighted mean

relative growth rate of the Richards function as the “absolute rate of discase
progress” ( Ra)and the “relative rate of disease progress™ ( Rr), respectively,
is proposed for describing and comparing epidemics with different
asymptotes and shapes of disease progress curves. Since they are
determined empirically without the unrealistic assumption on the upper
limit of disease severity, they provide more accurate information on disease
development than Vanderplank’s apparent infection rate or the rate
parameter of growth functions with the asymptote value of 1. Development
of bacterial blight in a soybean field was described using Ra and Rr.

Additional key words: Glyeine max, Gompertz model, logistic function, monomolecular function, Pseudomonas syringae pv. glveinea, Weibull model.

Since Vanderplank (28) proposed the monomolecular and the
logistic functions for describing development of monocyclic and
polycyclic diseases, respectively, these functions have been
extensively used as models of disease development. However,
disease development data often do not conform to either the
logistic or the monomolecular model. This is probably because the
biological basis of the models are a crude approximation of vastly
complex pathosystems and lack the flexibility necessary to
accomodate the diverse aspects of disease development.

Model flexibility can be enhanced by increasing the number of
parameters in the model. Statistical models of the polynomial type
are flexible; however, polynomial models are not often used for
disease progress primarily because of difficulty in biological
interpretation. As for mechanistic models, the number of
parameters can be increased either by generalizing several specific
models (19,27) or by incorporating new parameters based on more
detailed reasoning about the component processes (10,29). Increase
in flexibility by empirically using the Richards function (19) will be
discussed in this paper. The Richards function is a generalized form
of growth functions (Table 1).

Growth functions that are often used in studying plant disease
epidemics include the monomolecular, the logistic, and the
Gompertz functions. Disease progress is commonly modeled by
empirically fitting these functions to transformed or
untransformed disease progress data. In doing so, the asymptote
value of the disease progress curve is fixed at | (100% disease
severity) based on the assumption that all host area becomes
diseased at the end of the epidemic. However, the maximum
severity of any particular disease is a result of the interactions
among the host, the pathogen, and the environmental conditions,
and it often approaches an asymptote which is less than 1 (e.g.,
4,6,11,22,25). If disease development approaches an asymptotic
maximum severity of less than [, disease progress curves cannot be
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most accurately fitted by any function with the asymptote value of
|. Thus, the most commonly used forms of the monomolecular, the
logistic, and the Gompertz functions are often inappropriate. The
importance of determining correct asymptote values when
developing appropriate disease progress models has been noted
(1.2,12,14,15.26,27). Analytis (1,2), and Hau and Kranz (12) noted
that determination of the asymptote value on the empirical basis
improved goodness-of-fit of disease progress models. Kiyosawa
(14), Kushalappa and Ludwig (15), and Turner et al (27) suggested
corrections for the asymptote value. For a computer simulation of
disease progress, Teng and Zadoks (26) used the logistic function in
which the actual maximum severity was incorporated. Empirical
estimation of the asymptote value is also important in obtaining a
correct estimate of the rate parameter in disease progress models.
Analytis (1,3) identified the influence of the asymptote value on the
rate parameter of growth functions and demonstrated how the
asymptote value could affect the calculation of the rate parameter.

In this article we examine the consequence of using a model that
assumes the asymptote is equal to | whenin factitisless than I, and
the use of generalized rate parameters developed by Richards (19)
to compare epidemics with different asymptotic values and shapes
of progress curves. Computer-generated data are used in this paper
for the purpose of clarity in comparing models with asymptotes of |
and less than 1, and for introduction of Richards’ generalized rate
parameters. Richards’ parameters are then applied to comparisons
of bacterial blight epidemics in a soybean field in Illinois in 1981.
An abstract describing some of the work was published (17).

CHARACTERISTICS OF RATE PARAMETERS

Asymptote (4) and rate (k) parameters. The logistic function
(Table 1) is used to illustrate the consequence of fitting the model
with the asymptote parameter A4 fixed at | or estimated empirically,
Model | §¥=A/[1+¢e(B7kN]} describes the logistic function with
an empirically fitted asymptote. Model 2§¥ = 1/[1 + e(B=kN]
describes the logistic function with the asymptote fixed at 1. Mode
2 is commonly used by plant pathologists to determine
Vanderplank’s apparent infection rate, r (i.e., the rate parameter k
of model 2). Suppose that model 1 is true (i.e., maximum severity is
less than 1), but that Band k are estimated by assuming that model



2 is true (i.e., maximum severity equals 1). We consider the case
where there is no random error since this shows the comparison
more clearly and since more complicated cases should have no
fewer problems. Nine sets of data were generated by model | with
different values of A4, B, and k& which were chosen to represent
disease progress curves with three distinct aspects of development.
The data sets are plotted in Figs. 1-3. Fig. | represents disease that
progresses rapidly, reaches maximum severity early in the growing
season, and remains at the maximum level during the rest of the
season. Fig. 2 represents disease progress that slowly develops and
asymptotically reaches maximum severity at the end of the season.
Fig. 3 represents disease progress that develops so slowly that it is
still in the increasing phase at the end of the season. The least-

TABLE 1. Growth functions that have been used for disease progress
models

Growth function Equation”

Y:A[l —el# kn]

Monolecular

Logistic Y= A/[[l+e# ]

Gompertz Y= Ae# k0

Richards" Y= A[l =B 010 m] when 0< m < |
Y= A[L+e# A0] 100 m) yhen | <

" ¥ = disease severity (0 ¥< 1); 4 = asymptote parameter; B= position
parameter; e = base of the natural logarithm; k = rate parameter;
m = shape parameter; and r = time.

"The Richards function is the generalized form of growth functions. When
m = 0, the Richards function becomes the monomolecular function, when
m =2, it becomes the logistic function. Although the Richards function is
not defined when m = 1, as m approaches 1, it closely approximates the
Gompertz function. High values of m represent growth curves that show
prolonged exponential growth until the upper limit of growth is closely
approached, then growth ceases abruptly (20).
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Fig. 1. Disease progress curves generated by the logistic function
g Y=A/[l +e# '! with 8= 5, k = 0.4, and three values of A. These
curves represent disease progress that develops rapidly, reaches asymptotic
maximum severity ecarly in the growing season, and remains at the
maximum level during the rest of the growing season.

squares program for nonlinear models (NLIN Procedure with
Marquardt’s compromise method) of the Statistical Analysis
System (SAS) (21) was used to obtain estimates of the parameters
of the models.

Estimates of the rate parameter k determined from model 2 differ
substantially from the true k values of model | (Table 2).
Differences are greatest when the true value of k is large, and when
curves approach their asymptote early in the season. In all cases,
model 2 underestimated the rate parameter. When estimates of &
from model 2 are compared, their ranking in order of magnitude is
not the same as that of the true values of k from model 1. Also,
estimates of Bfrom model 2are not the same as the true values of B,
The coefficients of determination (R’) indicate that model 2 is not
appropriate, especially for curves that approach their asymptotes
early in the season and have lower asymptote values. Residual plots
of Model 2 for the first six cases of Table 2 (curves that approached

TABLE 2. Estimates of parameters B and k obtained by Model 2 when
Model | represents the true situation

Model (True)* Model 2"

A B k A B ke R

0.8 5 0.4 1 0.97 0.051 0.571
0.4 5 0.4 1 1.22 0.011 0.401
0.2 5 0.4 1 2.01 0.008 0.381
0.8 5 0.1 1 3.54 0.060 0.968
0.4 5 0.1 1 311 0.031 0.886
0.2 5 0.1 1 3.63 0.025 0.860
0.8 5 0.05 1 5.04 0.047 0.999
0.4 5 0.05 I 5.44 0.041 0.998
0.2 5 0.05 1 6.01 0.039 0.996

*Model 1: Y= A/[1+¢'# kM,

"Model 2: Y= I/[1 + e84,

“Model 2 was fitted to data sets that were generated by Model 1. Therefore,
parameters Band k of Model 2 were estimated assuming Model 2 was true
when in fact Model | was true. It was assumed that there was no random
error involved in this case.

“The coefficient of determination.
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Fig. 2. Disease progress curves generated by the logistic function ¥ =

A1+ e b with B=5, k = 0.1. and three values of 4. These curves
represent diseaSe progress that develops slowly and reaches asymptotic
maximum severity at the end of the growing season,
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their asymptotes) showed strong systematic trends. Residuals were
negative for the tails of disease progress curves and positive for the
middle part. For the last three cases of Table 2 (curves that did not
approach their asymptotes) model 2 provided good fit to data and no
systematic trends were observed in the residual plots of model 2.

Proof of underestimation and faulty rank of k. Underestimation
of k due to restricting the value of A4 to | can be demonstrated
mathematically. Since k is the rate of change of a function of
disease severity, which is In[ Y/(A4 — })] in the case of the logistic
function, k can be expressed as:

k= In[Y2/(A— Y)]—In[Yi/(A— Y1)] [(12— 1), (1)

in which ¥, and Y. are disease severities at time r; and /2,
respectively. If A is restricted to I, then the rate parameter k of the
logistic function becomes Vanderplank’s apparent infection rate (r)
(28), and

r= In[Y2/(1— Y2)]= In[ Yo/ (1 = ¥Y1)]/(r2—t1) (2)

Underestimation of k by restricting A to | wheninfact A<Icanbe
demonstrated by comparing k in equation | and r in equation 2.
From equations | and 2,

k=r=In[(A— Y)(1—= Y2)/(A—= Ya)(I — Yi)l/ (2 = n). (3

Inequation 3, 1 — r isalways greater than zero and In[(A4 — ¥1)(!
= ¥2)/(A— Y2)(1— Yi)isalsoalways greater than zero because the
numerator, (A4 — Y )(I — Y:), is always greater than the
denominator, (4 — Y2)(1— ¥1). This can be shown as follows: If P=
(A= Y)(l— Y2).and Q=(A— Y2)(1 = Y1), then P— Q=(1—A)(}:
= Y1).Since A <I,and ¥, <Y, P(the numerator)is greater than Q
(the denominator). Therefore, the left side of equation 3 is always
greater than zero, which means r is always smaller than & if the
logistic model with 4 = 1 is used when in fact A4 is less than [.

The faulty ranking of k values due to restricting A to | can be
explained graphically. Fig. 4 shows the changeinIn[ Y/(A — Y)]over
the infinitely small increment of Y (disease severity), when 4 = 0.5
was arbitrarily chosen for illustration. If the asymptote parameter
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Fig. 3. Diseasc progress curves generated by the logistic function
Y=A/[l+e'd "‘”]J with 8= 5.k = 0.05.and three values of 4. These

curves represent disease progress that develops so slowly that severity is not
at the maximum and is increasing at the end of the growing season.
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A of the logistic function is restricted to | when in fact 4 = 0.5, the
response of In[ Y/(1 — Y)] to infinitely small increases in Y is not
symmetrical overall values of Y. A smallincrease in severity results
in a great increase in In[ ¥/(1 — ¥) when severity is low, whereas it
causes much smaller increase inIn[ ¥/(1— ¥)]as severity approaches
the maximum severity of 0.5 used in this example. Therefore, k for
slowly developing disease progress which has significantly low
severity at the beginning can be faultily higher than that for rapidly
developing disease progress that starts with relatively high severity
and reaches a higher severity than that for slowly developing
disease progress. However, if 4 = 0.5 is used in the model, the
response of In[ Y/(0.5 — ¥)] to an infinitely small increase in Yis
symmetrical over Y (Fig. 4) so that In[ ¥/(0.5 — V) is affected by
high severity as much as by low severity. Therefore, k can be
determined without bias caused by severity.

The Richards rate parameters. Table 3 shows two generalized
rate parameters that were developed by Richards (19) for
asymptotic growth functions. Richards proposed the use of the
weighted mean absolute growth rate and the weighted mean
relative growth rate of the Richards function for biological
interpretation. Growth curves with different values for the shape
parameter of the Richards function can be compared without
danger that using those two parameters will result in any loss of
biological meaning (19,20). Mathematical derivations of these
parameters were shown in detail by Richards (19).

In the context of describing plant disease development, the
weighted mean absolute growth rate and the weighted mean
relative growth rate will hereafter be called the “absolute rate of
disease progress” (denoted by Ra) and the “relative rate of disease
progress” (denoted by Rr), respectively. Ra indicates the average
rate of increase in disease severity per unit time, whereas Rr is the
average rate of increase in disease severity per unit disease severity
per unit time. It is valuable for describing disease development to
know the average rate of increase in severity not only in terms of the
proportion of the total leaf area (Ra) but also in terms of the
proportion of the diseased leaf area (Rr). For comparative
purposes, Rr is more useful than Ra because Rr accounts for
disease severity attained. In addition, Rris a generalization of the
information conveyed by k alone when curves with the same value
of m, (i.e., single-shape curves) are compared (19). The Ra and Rr
values calculated from the true models (model 1) in Table 2 are

100
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Fig. 4. Increment of In[ ¥/(A4 — ¥)] over the infinitely small increment of ¥
(discase severity): d/d Y) In[ ¥/(4 — V)]



presented in Table 4. In the first case of Table 4, for example, the Ra
and Rrvaluesindicate that disease severity increases at the average
rate of 5.33% of the total leaf area per unit time, which is an average
increase of 20% of already diseased leaf area per unit time.

Values of k versus Ra and Rr. The linear form of the Richards
function is:

~ o f 1= (pj A= } = B+ ki when 0<m<1,

~In § (A= mi—| } == B+ ke when m>1.

The rate parameter k in these equations expresses the rate of change
of a function of Y, whichis —In ] (¥/ AU =mi=1¢ or—In{ 1 —
(YA =mi Ir Since A and m are included in these functions
of Y, k is specific for each curve, depending on A and m. Therefore,
k is not interfunctionally comparable and it is difficult to interpret
differences between values of & derived from curves with different
values of 4 and m. In contrast, Ra and Rr are interfunctionally
comparable because they are determined from the instantaneous
absolute growth rate (d Y/dr) and the instantaneous relative growth
rate [(1/ Y)(d ¥/d1)) at time ¢, respectively (19). Ra and Rr are also
biologically more meaningful than k because the absolute and the
relative growth rates are defined as the absolute and the relative
rates at which Y (disease severity) changes, respectively, whereas &

is the rate at which a function of Y, i.e., —In [ (Y] A)—Lhi=mil—
lfor—=In {1 —(Y/ Ay ""]| , changes.
APPLICATION

Data collection. Bacterial blight epidemics were induced by
inoculating soybean cultivars Wells I1 and Williams 79 in the field
at the six-node vegetative stage (V6 stage [9]) and the reproductive
stage at which pods 0.5 cm long were formed at one of the four
uppermost nodes with a completely unrolled leaf (R3 stage [9]).
Inoculation was done by spraying inoculum of Pseudomonas
syringae pv. glycinea (107 colony-forming units per milliliter) at a
pressure of 7.2 kg/cm® until run-off occurred. The isolate of
Pseudomonas syringae pv. glycinea used in this study was obtained
from a naturally infected Gnome soybean plant in Urbana, IL in
1980. The inoculum was made from a 2-day-old culture on King's B

TABLE 3. The weighted mean absolute and relative growth rates of the
Richards function®

Weighted mean absolute growth rate:

(1 ASMNd Y/ dnd Y = Ak[(2m + 2)

Weighted mean relative growth rate:

(1AM NEAY/ddY=k|m

“Mathematical derivation of these two parameters is given in detail by
Richards (19).

TABLE 4. The absolute ( Ra) and the relative (Rr) rates of disease progress
of true models (Model 1%) in Table 2

A B k* Ra* Rr!
0.8 5 0.4 0.053 0.2
0.4 5 0.4 0.027 0.2
0.2 5 0.4 0.013 0.2
0.8 5 0.1 0.013 0.05
0.4 5 0.1 0.007 0.05
0.2 5 0.1 0.003 0.05
0.8 5 0.05 0.007 0.025
0.4 5 0.05 0.003 0.025
0.2 5 0.05 0.002 0.025

‘Model I: Y= A[[1+ B ¥,

"k = 1/ (unit time).

‘ Ra = severity/ (unit time).

! Rr = severity/ (unit severity)/ (unit time).

agar plates at 24 *1 C and turbidometrically adjusted to
approximately 10" colony-forming units per milliliter of distilled
water. Approximately 2.4and 3.3 L of inoculum was used for each
plot at the V6 and the R3 stages, respectively. Naturally occurring
bacterial blight was also observed on both cultivars in check plots.
The experiment was replicated four times in a split-plot
arrangement of a randomized complete block design in which the
two cultivars were whole plots and the inoculations and natural
infections were subplots. Each subplot consisted of six rows which
were 6.1 m long and 76 cm apart. The seeding rate was eight seeds
per 30 cm of row.

Disease severity for each of the middle two rows of each plot was
rated eight times at 6- to 10-day intervals from the day when
bacterial blight symptoms were first observed in the field. A
modified Horsfall-Barratt scale (Table 5) was used for visual rating
of disease severity. The ratings for each of the middle two rows were
converted to proportion of leaf area diseased (0 <Y <1) and then
severity of individual plots was obtained by averaging the
converted severities of the middle two rows.

Comparison of bacterial blight epidemics. The Richards
function was fitted to mean severity values of the four replications,
Because maximum severity due to natural infection on Williams 79
was less than 0.5%, it was excluded in the analysis. The NLIN
procedure of SAS (21) with the Marquardt’s compromise method
was used to estimate A, B, k, and m of the Richards function. Initial
values of the four parameters from which the iterative procedure of
the nonlinear fitting started were obtained by Causton’s (7)
method. Estimates of the parameters of the Richards function and
observed final severity ( ¥/) for each bacterial blight development
are presented in Table 6.

Estimates of 4 were close to their final severity. The estimates of
m indicated that bacterial blight development on plants of Williams
79 that were inoculated at the R3 stage followed a curve between
the logistic and the Gompertz curves, whereas the other bacterial
blight progress curves had a prolonged exponential phase with an
abrupt cessation of increase in severity, The highest value for the
rate parameter & was obtained from the epidemic which was
artificially induced at the V6 stage of Williams 79 and the lowest
from the epidemic which was artificially induced at the R3 stage of
Williams 79.

TABLE 5. The Horsfall-Barratt scale (13) for disease rating and its
modification

Horsfall-Barratt scale Modified scale

Severity Severity
Rating (proportion) Rating (proportion)
1 0.0 1 0.000
I+ 0.005
2 0.03 2 0.015
K 0.0375
3 0.03-0.06 3 0.045
3+ 0.052
4— 0.0825
4 0.06-0.12 4 0.095
4+ 0.1075
5— 0.1555
5 0.12-0.25 5 0.187
5+ 0.2185
6— 0.3125
6 0.25-0.50 6 0.375
6+ 0.4375
= 0.5625
7 0.50-0.75 7 0.625
7+ 0.6875
8— 0.78
8 0.75-0.87 8 0.81
8+ 0.84
9- 0.8875
9 0.87-0.94 9 0.905
9+ 0.925
10 0.94 10 0.97
10+ 1.00
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The Ra and the Rr (Table 7) indicated that naturally occurring
bacterial blight on Wells 11 developed slowly compared to those
which were artificially induced. When a bacterial blight epidemic
was induced at the R3 stage of both cultivars, it developed more
rapidly and reached higher severity than when induced at the V6
stage. The Ra values for the epidemics induced at the R3 stage of
both cultivars were approximately 2-4 times greater than those for
the epidemics induced at the V6 stage. In contrast, there was little
difference in the Rr values for the artificially induced epidemics. Ra
and Rr values for epidemics induced on Wells II were greater than
those for corresponding epidemics induced on Williams 79,

DISCUSSION

Table 2 shows that not only underestimation of the rate
parameter k but also faulty ranking of k-values can occur when the
logistic function with 4 = | is fitted to data sets with actual
asymptotes differ from each other by less than 1. This is
demonstrated mathematically and graphically in this paper.
Systematic trends of residuals that result from using models with 4
= l alsoindicate that empirical estimation of A or correction for A
is necessary to obtain appropriate models when disease progress
approaches an asymptote less than I. The faulty ranking of k-
values that causes difficulty in biological interpretation can be also
found in the literature. For example, Vanderplank’s apparent
infection rates for resistant cultivars are supposed to be lower than
those for susceptible cultivars (28). However, the apparent
infection rates calculated for resistant cultivars were sometimes
greater than those for susceptible cultivars (16,24,31). This serious
drawback of the apparent infection rate is due to restricting 4 of the
logistic function to | based on the unrealistic assumption that all
host area has become diseased at the end of epidemics. As
explained previously in this paper, using the In[Y/(1 — V)]
transformation based on the unrealistic assumption results in a
serious bias in calculating the apparent infection rate. This
characteristic of the apparent infection rate (i.c., being affected
much more greatly by low severity than by high severity) was also
discussed by Shaner and Finney (23). Because of the faulty ranking
of the Ra values, the area under the disease progress curve
(AUDPC) has been preferred as a disease statistic, especially in
slow-rusting and slow-mildewing studies (24,31) which are
conceptually based on the rate of disease development.

Although the logistic function was used in this paper, the same
problem due to restricting the asymptote to | occurs when other
asymptotic growth functions, such as the monomolecular and the
Gompertz functions, are used. Also, the same problem can be faced
with the Weibull function (30) which differs from the asymptotic
biological growth functions. The Weibull function has flexibility of
application but it does not include the asymptote parameter so that
the asymptote value of the function is fixed at 1 (4-6,18). Campbell
et al (6) used the Weibull function to characterize the development
of snapbean hypocotyl rot. Disease severity of one snapbean
hypocotyl rot progress curve in their paper (Fig. 1A of ref. 6)
approached the asymptotic value of approximately 36% at day 40,
which indicated that the absolute rate of increase in disease severity
became close to zero at day 40. However, the rate curve of the
Weibull model (Fig. 1B of ref. 6) indicated the rate was
approximately 0.022 at day 40 and that the maximum rate (0.024)

TABLE 6. Parameter estimates of the Richards models for bacterial blight
development and the final severity ( ¥) on two soybean cultivars

Cultivar GS® Y, A B k m Rﬂ'
Wells 11 NI 0.034 0.035 10824 393 4529 098
V6 0.093  0.104 18.23 115 7.41 0.94

R3 0350 0355 16223 444 2203 099

Williams 79 V6 0.095  0.095 174.67 826 Bl46 097
R3 0.293  0.280 6.81 0.23 1.48 095

‘" Growth stages of soybean plants at which plants were inoculated.
"The coefficient of determination.
“Natural infection.
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occurred at day 45. The discrepancy between the observed data
(Fig. 1A of ref. 6) and the model (Fig. 1B of ref. 6) resulted from
fixing the asymptote value of the Weibull function at | although the
disease progress curve approached 0.36 asymptotically. Thus, for
the Weibull function to adequately describe disease progress with
asymptotes of less than I, a new parameter for the asymptote value
needs to be included.

Disease progress curves often are still in the increasing phase at
the end of the crop-growing season or at the time of the last
observation (Fig. 3). Data for those disease progress curves do not
include information on the location of their asymptotes. Therefore,
functions with the asymptote parameter are overparameterized and
inadequate for the data (8). In Table 2, model 2 for the curves with a
true k = 0.05 (i.e., curves from Fig. 3) has extremely high coefficients
of determination (R”) and estimates of Band k are close to their
true values. This indicates that the function without the asymptote
parameter (i.e., 4 is fixed at 1) would be appropriate for disease
progress curves lacking asymptotes.

Widely different values of the shape parameter m for five
bacterial blight development curves suggest that there is no specific
growth function that is particularly well suited for soybean
bacterial blight. Because m can have different values , estimates of
the parameter B for the five bacterial blight development curves
cannot be compared. However, when disease progresses with the
same value of m (i.e., have the same shape of disease progress
curves) are compared, B indicates the time when diseases start to
develop rapidly . Also, Bis necessary to calculate a period of time
delay to reach certain levels of severity. The time delay is important
in conjunction with the concept of sanitation (28,32).

Estimates of the asymptote parameter A can be interpreted as the
magnitude of susceptibility or resistance of a host to a pathogen
under certain environmental conditions. Higher A values for
bacterial blight development on Wells 11 than for corresponding
disease progress on Williams 79 indicate that Wells II is more
susceptible than Williams 79. When A values were compared
between growth stages at which plants were inoculated, higher A4
values were reached when plants were inoculated at the R3 stage
than at the V6 stage of both cultivars. This is probably due to
greater amount of inoculum applied at the R3 stage than at the V6
stage and smaller increase in the total leaf area after inoculation at
the R3 stage than at the V6 stage. Since estimates of m and A for
five bacterial blight progress curves are each different, the rate
parameter k is specific for each progress curve and, therefore, is not
comparable.

The Raand Rr values also reflect the effects of the difference in
theamount of initial inoculum applied and increase in the total leaf
area after inoculation. Because of high initial severity and relatively
small increases in the total leaf area after inoculation at the R3
stage, the absolute increment of severity per day ( Ra) was high on
both cultivars. Low initial severity and large increase in the total
leafarea afterinoculation at the V6 stage of both cultivars resulted
in small absolute increment of severity per day. However, when the
rate of increase in severity was adjusted so as to take account of
severity already attained, the rates of increase in severity per unit
severity per day (Rr) were not greatly different between bacterial
blight development induced at the V6 and the R3 stages of both
cultivars. This suggests that there may be no great difference in

TABLE 7. The absolute ( Ra) and the relative ( Rr) rates of bacterial blight
development on two soybean cultivars

Cultivars GS* Ra" Rr

Wells 11 NI 0.002 0.087
\ 0.007 0.155
R3 0.034 0.201

Williams 79 0 0.005 0.101
R3 0.013 0.155

"Growth stages of soybean plants at which plants were inoculated.
" Ra = the average increase in severity per day.

* Rr = the average increase in severity per unit severity per day.
“Natural infection.



susceptibility of both cultivars to bacterial blight between the two
growth stages. Slow development of natural infection compared to
artificially induced bacterial blight development is probably due to
differences in the amount of inoculum and genetic variation
between naturally occurring and inoculated populations of
Pseudomonas syringae pv. glycinea.

We propose the use of the weighted mean absolute growth rate
and the weighted mean relative growth rate of the Richards
function (19) as the Ra and Rr, respectively, for describing and
comparing epidemics with different asymptotes and shapes of
disease progress curves. Since they are not only biologically
meaningful but also interfunctionally comparable, they are more
useful for describing and comparing epidemics with different
asymptotes and shapes of disease progress curves than
Vanderplank’s apparent infection rate or the rate parameter k of
growth functions with the asymptote value of I. The Raand Rrare
descriptive parameters because they are obtained by empirically
fitting the Richards function to disease progress data. Further
studies are needed to relate these parameters to components of
epidemiological processes such as latent period, infection
efficiency, and infectious period.
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