Inheritance of Compatibility and Sex in *Gibberella baccata*

E. B. Lawrence, Paul E. Nelson, and T. A. Toussoun

Former graduate research assistant and professors of plant pathology, Fusarium Research Center, The Pennsylvania State University, University Park 16802. Present address of the senior author is Monsanto Agricultural Products Co., 800 N. Lindbergh, St. Louis, MO 63166.

Contribution 1427, Fusarium Research Center, Department of Plant Pathology, The Pennsylvania Agricultural Experiment Station. Authorized for publication 7 November 1983 as Journal Series Paper 6816. Portion of a thesis by the senior author submitted in partial fulfillment of the requirements for the Ph.D. degree, The Pennsylvania State University. Accepted for publication 10 August 1984.

ABSTRACT

Isolates of *Gibberella baccata (=Fusarium lateritium*) were mated and produced perithecia on carrot agar at 22°C under mixed cool-white and black fluorescent lights on a 12-hr alternating light/dark schedule. Of the cross-fertile isolates, most were hermaphrodites, although three were males and one was tentatively identified as a female. Data from test crosses indicated that the two compatibility groups were allelomorphs not linked to the gene(s) controlling sexual expression. Isolates proved interfertile irrespective of origin and host.

Gibberella baccata (Waller.) Sacc. (=*Fusarium lateritium* Nees) has a broad host range and is distributed worldwide. It causes a canker and dieback on a wide range of woody plants (3). In Africa, notably Nigeria and Benin, where *Celosia argentea* L. is grown as a popular staple leaf vegetable, *F. lateritium* is the causal agent of a serious leaf and stem spot (2).

G. baccata has been reported to be heterothallic (7,8) or heterothallic and homothallic (3) and forms perithecia in culture (1-3) and in nature (14). Homothallic strains rarely produce perithecia on agar but will produce them on materials such as sterile wheat straw (3). In studies of *F. lateritium* from Nigeria, Afnan et al. (1) found all isolates that were tested to be self-sterile; perithecia were produced only from matings between stromatic and nonstromatic isolates. From these results, they suspected that a compatibility factor was present.

To date, only random matings of this fungus have been performed, and the nature of the compatibility and sexual systems remain unclear. The purpose of this work was to elucidate the nature of the compatibility and sexual system in *G. baccata* by means of a series of crosses and testcrosses.

MATERIALS AND METHODS

Isolates of *G. baccata* from the collection of the Fusarium Research Center were utilized in a series of eight crosses and two testcrosses. Media and cultural conditions were varied in an attempt to identify conditions that would yield optimum results even for minimally fertile isolates.

Media used were potato-dextrose agar (PDA) (17), γ-irradiated carnation leaf agar (CLA) (5), V-8 juice agar (V8A), wheat straw agar (WSA), and wheat stem piece agar (WSPA) prepared as described by Fisher et al. (5). Stem pieces of *Triticum aestivum* cultivar Michigan Amber/68 Chancellor, Cl 15888, 5 cm long, were dried in an oven at 45-55°C and sterilized with 2.7 megabugs of gamma irradiation from a cobalt 60 source or kept in the refrigerator until they were sterilized for 1 hr with ethanol (WSP-EtOH). A treatment that stimulated production of perithecia of *Gibberella zeae* (Schw.) Petch. (18).

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. § 1734 solely to indicate this fact.

©1985 The American Phytopathological Society

322 PHYTOPATHOLOGY
the crushed perithecia were washed onto a large (8.5-cm diameter) petri dish of 2% water agar. The following day, germinated ascospores were identified under a microscope, marked, and transferred to PDA slants. All progeny from a given cross were placed on PDA that had been prepared at the same time.

These tubes were placed under cool-white fluorescent lamps for 2 wk then were evaluated for colony morphology. At this time each progeny isolate was assigned a L. fibril (LF) number.

Single spores of all F5 to be used in the testcross were placed on CA slants. These testcrosses were set up so that each FI isolate acted as a male for the female parent in the original cross, and as a female for the male parent in the original cross. The original male parent was grown on CA under fluorescent lights, while the rest of the isolates were grown under mixed light sources. Each tube in the cross was checked for mature perithecia 3 wk after spermatization and periodically for an additional 2 mo.

RESULTS

Mating type and sex. Of the 29 isolates tested, 16 crossed successfully with one or more of the other isolates. As indicated in Fig. 1, none of the isolates produced the perfect state when selfed (indicated by the dashed diagonal line). Instead, the isolates segregated into two groups that were incompatible and intersterile. The majority of the isolates tested proved to be hermaphrodite, while four were unisexual. Isolates L83, L86, and L95 only acted as males in crosses, while L55 appeared to be female, although it was so in only one cross and that designation is tentative. Accordingly, fertile isolates were separated into two incompatibility groups, main type (mt-) and mating type + (mt+) as shown in Table 1.

The number of loci involved in coding for mating type (mt) was determined by testcross analysis. Of 77 random F5s from the cross L88 (mt+ hermaphrodite) × L90 (mt- hermaphrodite), 64 proved to be fertile. Thirty-two of the fertile F5s crossed successfully with L88 indicating the F5s were mt- and 32 crosses successfully with L90 indicating the F5s were mt+. This 1:1 ratio of mt+ to mt- would be expected if mating type is controlled by one gene with two alleles (x² = 0.008, d.f. = 1, and P = 0.9 [Yates' correction factor]) (15).

The second testcross involved 169 randomly selected progeny from the cross L90 (mt- hermaphrodite) × L86 (mt+ male). The results of this testcross are shown in Table 2 and support the hypothesis that mating type is controlled by one gene with two alleles which is not linked to the gene or genes controlling expression of sexual type.

Cultural requirements for production of perithecia. Perithecia were produced most abundantly when the maternal isolate was grown under a mixture of cool-white and black fluorescent light. In general, CA was the most suitable medium for production of perithecia although isolates L70, L73, L75, and L76 fruited more vigorously on γ-irradiated WSPA. Mature perithecia appeared 24–55 days after spermatization depending on the isolates involved. Perithecia developed in the same length of time in reciprocal crosses.

DISCUSSION

The sexual system of *G. baccata* appears to parallel that of *F. solani* f. sp. *cucurbitae* (4,10) and *F. moniliforme* (12) in that it exhibits compatibility heterothallism. Whether it also display sexual heterothallism remains uncertain. As with the above two species, different isolates do vary in sexual expression. While most fertile isolates were hermaphrodites, three male isolates (L83, L86, and L95) were found and L55 acted only as a female in the cross in which it was used. However, since not all isolates were equally fertile, the results of one cross are not sufficient to designate an isolate as male or female.

Initial crosses of hermaphrodite and male isolates of *F. solani* f. sp. *cucurbitae* resulted in a one-to-one ratio of both sexual types in the progeny (9). This implied that one gene with two alleles controlled sexual expression. In such a situation, identical to the L90 × L86 cross presented here, recombinant sexual types would not be detectable. As with *F. solani* f. sp. *cucurbitae*, which possesses separate genes for maleness and femaleness (4,10), determination of sexual heterothallism for *G. baccata* will rely on the recovery of hermaphrodite and neuter recombinant progeny from crosses of male and female isolates. When a consistently fertile female isolate of *G. baccata* is identified, this experiment will need to be performed.

Compatibility or mating type in *G. baccata* is controlled by one gene with two alleles as indicated by the testcross results. As shown in Fig. 1, isolates segregated into two groups that were intersterile and intrasterile. Although Booth (3) stated that homothallic strains exist, our results agree with those of Afanide et al (1), and no self-fertile isolates were observed.

The relationship between the compatibility locus and the gene(s) for sexual expression was explored in the testcross from the progeny of L90 × L86 (Table 2). If the gene or genes controlling sex and mating type are unlinked, equal numbers of mt- hermaphrodites, mt+ hermaphrodites, mt- males, and mt+ males would be expected. However, when using the F1 progeny as the spermatizing agent in a testcross with isolate L90 as the female, one would be unable to differentiate mt+ hermaphrodites and males.

TABLE 1. Mating type designations and sources of isolates of *Gibberella baccata* used in this study

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Origin</th>
<th>Host</th>
<th>Sex</th>
<th>Mating type</th>
</tr>
</thead>
<tbody>
<tr>
<td>L55</td>
<td>Louisiana</td>
<td>Elm canker</td>
<td>F</td>
<td>+</td>
</tr>
<tr>
<td>L70</td>
<td>Zimbabwe</td>
<td>Coffee arabica berries</td>
<td>FM</td>
<td>-</td>
</tr>
<tr>
<td>L73</td>
<td>Zimbabwe</td>
<td>Coffee arabica berries</td>
<td>FM</td>
<td>+</td>
</tr>
<tr>
<td>L75</td>
<td>Zimbabwe</td>
<td>Coffee arabica berries</td>
<td>FM</td>
<td>-</td>
</tr>
<tr>
<td>L76</td>
<td>Zimbabwe</td>
<td>Coffee arabica berries</td>
<td>FM</td>
<td>-</td>
</tr>
<tr>
<td>L83</td>
<td>Papua New Guinea</td>
<td>Coffee berries</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>L85</td>
<td>Papua New Guinea</td>
<td>Coffee berries</td>
<td>FM</td>
<td>-</td>
</tr>
<tr>
<td>L86</td>
<td>Papua New Guinea</td>
<td>Coffee berries</td>
<td>M</td>
<td>+</td>
</tr>
<tr>
<td>L87</td>
<td>Papua New Guinea</td>
<td>Coffee berries</td>
<td>FM</td>
<td>-</td>
</tr>
<tr>
<td>L88</td>
<td>Papua New Guinea</td>
<td>Coffee berries</td>
<td>FM</td>
<td>-</td>
</tr>
<tr>
<td>L89</td>
<td>Papua New Guinea</td>
<td>Coffee berries or twigs</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>L90</td>
<td>Papua New Guinea</td>
<td>Coffee berries or twigs</td>
<td>FM</td>
<td>-</td>
</tr>
<tr>
<td>L91</td>
<td>Papua New Guinea</td>
<td>Coffee berries or twigs</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>L92</td>
<td>Papua New Guinea</td>
<td>Coffee berries or twigs</td>
<td>FM</td>
<td>-</td>
</tr>
<tr>
<td>L95</td>
<td>BBA Berlin 62458</td>
<td>Coffee arabica</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>L107</td>
<td>Zimbabwe</td>
<td>Coffee</td>
<td>FM</td>
<td>-</td>
</tr>
</tbody>
</table>

F = female, *M* = male, and *FM* = hermaphrodite.

*It was not possible to determine the species of *Coffee* from New Guinea.

Fig. 1. Results of diallel crosses of isolates of *Gibberella baccata*. A successful cross resulting in the production of perithecia with mature ascospores is indicated by a star while isolates that did not produce perithecia when selfed are indicated by a dash.
TABLE 2. Results of testcross of 160 F₁ progeny from the cross of isolates L90 × L86 of Gibberella baccata

<table>
<thead>
<tr>
<th>Parents</th>
<th>Expected progeny genotypes</th>
<th>F₁s expected in a fertile cross (no.)</th>
<th>F₁s observed in a fertile cross (no.)</th>
<th>(\chi^2) df = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FM⁻</td>
<td>M⁻</td>
<td>FM⁺</td>
</tr>
<tr>
<td>L90 (mt⁻ × FM) × F₁s</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>F₁s × L86 (mt⁺ × M)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

\(^{a} \) Chi square \((\chi^2) \) for a 1:1 ratio is 3.84 at \(P = 0.05 \) according to Yates' correction factor (15).

These two progeny genotypes would be rated together, resulting in a 1:1 ratio of successful to unsuccessful matings in the first testcross. Only one-fourth of the 169 progeny, the mt⁻-hermaphrodites, would be expected to act successfully in a testcross when used as the female with isolate L86 (mt⁺) as the male. The half of the progeny that was mt⁺ could, of course, not cross with another mt⁺ isolate. The remaining quarter of the progeny, the mt⁻-males, would not have acted successfully in the testcrosses as they were performed. These data illustrate that the genes for mating type and sexual expression are inherited independently.

Perithecia of *G. baccata* have been reported to occur in nature (14), and indeed isolates L70 and L73 from the same location (Zimbabwe) and host (berries of *Coffea arabica*) were able to cross. Isolates from different locations and hosts also proved fertile. Isolate L55, recovered from an elm with branch dieback in Louisiana successfully crossed with L85, an isolate from coffee berries from New Guinea. This situation resembles that reported for *F. moniliforme* (12).

LITERATURE CITED