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ABSTRACT

Gilligan, C. A. 1985. Probability models for host infection by soilborne fungi. Phytopathology 75:61-67.

Some theoretical models for the infection of hosts by soilborne fungi are
derived. Emphasis is given to the effects of the following phenomena on the
probability of infection: spatial pattern of inoculum, displacement of soil by
the growth of host organs, and distance of a propagule of inoculum from the
surface of the host. A binomial model, of the form P=(1—¢)", is presented
for the probability ( P) that a host unit, such as a root, seed, hypocotyl, or (in
the case of hyperparasitism) a sclerotium, should remain uninfected when
exposed to soil randomly infested by N propagules of a pathogen. The
probability that the host encounters a fungal propagule, and is infected by
it, is given by ¢. The zone within which encounter and infection can occur is
designated the “pathozone.” The relationship between the binomial model
and the Poisson model is discussed. A negative binomial model, of the form
P=(1+ Né/k)*, is presented for the probability that a host unit should

Additional key words: rhizosphere, spermosphere.

escape infection when exposed to soil in which propagules of the pathogen
or parasite are clumped; k is an index of the degree of clumping.
Refinements of the models to allow for thresholds of numbers of infections
required to cause disease are given and some effects of clumped and
randomly dispersed inoculum upon the probability of disease escape are
shown. Models in which allowance is made for the displacement of soil by
the host unit in estimating ¢ are compared with those that assume no
displacement. Differences in the predictions of the models are illustrated for
an example of hyperparasitism of sclerotia. More complex binomial
models, of the form P= (1—04). for the probability of a host unit escaping
infection are presented, in which 8 is the probability that a propagule occurs
in the pathozone, and 4 is the probability that the propagule can infect the
host, conditional upon its occurrence in the pathozone.

There is a certain volume of soil associated with a subterranean
plant organ within which a propagule of a fungal pathogen must
occur if it is to have any chance of infecting that organ. Propagules
outside this volume either do not respond to the presence of the
host or, if they do, have insufficient reserves of nutrients to reach
and infect the host. The dimensions, particularly the width, of this
exclusive volume are of interest to epidemiologists because they
prescribe the proportion of the total soil population of a pathogen
that encounters host organs. This relationship has been used
(10,14) to obtain an expression for the expected number of
infections per host organ. Rearrangement of the expression allows
estimation of the width of the volume when the number of
infections per host unit is either known or estimated. In the case of
roots, this facilitates estimation of the width of the rhizosphere.
Baker et al (5) had earlier proposed a different model to describe the
initial infection of host units by propagules of soilborne fungi. That
model was based upon the theory of solid packing and surface
density, as developed, for example, in physical chemistry (21). It
allowed a qualitative distinction between rhizosphere and rhizo-
plane infection so long as pathogen propagules were regarded as
points (ie, without volume). The two approaches to modeling of
root infection have been subjects for lively debate (2,4,5,10,11,14,
17,20,26). Baker and Drury (4) concede that if the propagules can
be regarded as having volume, then the surface density model is
inappropriate. They also assert that the alternative models,
designated by Gilligan (17) as probability models, are useless
without some estimate of the infection efficiency of a pathogen
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population. By infection efficiency is meant the proportion of the
total soil inoculum capable of causing infection of hosts, if
favorably placed to do so.

In this paper the simple probability model is developed further.
The models presented below are envisaged as applying primarily to
host-parasite systems involving large propagules, such as sclerotia.
Infection efficiencies may be estimated by direct placement of the
propagules adjacent to susceptible host units (15,23). Four problems
in particular are addressed. First, allowance is made for multiple
infection'so that the investigator only has to score for presence or
absence of infection and not for the total number of infections.
Second, allowance is made for clumping of the inoculum in soil.
Third, the shape of the target volume is considered. Whether or not
the target is taken to be solid or hollow depends upon whether
allowance is made for displacement of soil by the host unit. Fourth,
the effects of distance of propagules from the surface of the host is
considered in relation to the probability of infection.

In this paper, the term pathozone means the region of soil
surrounding a host unit within which the center of a propagule
must lie for infection of the host unit to be possible. The term
pathozone has several advantages over previously used terms such
as rhizosphere or spermosphere. It is a more general term that may
be applied to a root, seed, hypocotyl, epicotyl, or mesocotyl and, in
the case of hyperparasitism, for example, to a sclerotium or an
oospore. Pathozone does not carry the connotation of extent of
exudation of nutrients (sugars, amino acids, and organic acids) that
may be attributed to the term rhizosphere. Hiltner (24) originally
proposed the term rhizosphere to describe the zone of soil
surrounding the roots of legumes in which the growth of bacteria
might be influenced by nitrogenous compounds. Although
it has come to be more broadly defined as the zone of influence
surrounding roots (35), most work on the extent of the rhizosphere
has concentrated on measurement of changes in density of
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saprophytic microorganisms in relation to nutrient exudation (see,
eg, the reviews of Rovira [34] and Bowen and Rovira [6]). The
concentration of exuded nutrients drops off sharply within the first
1=2 um from the root surface (see the calculations of Newman and
Watson [29]). Nevertheless, stimulation of the growth of mycelium
from sclerotia has been demonstrated over much larger distances
(7,32), presumably in response to volatiles that can diffuse through
soil for greater distances (8). In other instances, host exudates may
not be important in stimulating germination of fungal sclerotia (8).
Spontaneous germination of sclerotia in the absence of hosts has
been reported for Phymatotrichum omnivorum (25), Rhizoctonia
solani (31), Sclerotium rolfsii (1), and Helicobasidium purpureum
(41).

Other terms have been proposed to describe the same concept as
the pathozone. Earlier I used the term “zone of potential infection”
(15), but reference to an infection zone may confuse the concept
with that of the infection court (3). Grogan et al (20) favored the
term competence volume, and defined competence as the ability of
propagules to germinate and infect, if located near enough to the
surface of the host. Competence, however, is defined in the
dictionary as a sufficiency without superfluity (R. Drury, R. Baker,
and G. Griffin, personal communication: see, eg, [30]). The concept

TABLE 1. Glossary of symbols used to represent variables and parameters
in the text

Variable or
parameter Symbol  Definition
Host M Number of hosts within volume, ¥, of soil.
L Length of host root exposed to infection.
r, Radius of root.
rog Radius of seed.
Expected number of infections per host.
v Expected number of uninfected hosts.
D Expected number of diseased hosts.
Pathogen N Number of propagules within volume, V,
of soil.
i Inoculum density (propagules per unit
volume).
r Radius of propagule of inoculum,
m Mean number of propagules within patho-
zone (= Ngb).
k Index of aggregation of propagules.
Environment V Total volume of soil within which inoculum

and hosts occur,

Host/pathogen ¢ Probability that a propagule occurs in

the pathozone and infects the host.

Pit Estimate of ¢, based upon the multiple
infection transformation.

0 Probability that propagule occurs in the
pathozone.

i Probability that propagule infects hosts,
given that propagule occurs in the
pathozone.

v Volume of the pathozone.

R QOuter radius of pathozone.

w Component of radius of pathozone, where
R=r.+w+tr,

r Radial distance from center of pathozone.

Pr Observed proportion of propagules that can
infect a host from a distance r.

n Number of infections per host less than a
threshold number above which disease is
observed.

a, 3, Parameters of function, Bexp(—ar?), for

decrease in probability of infection with
increasing distance of propagules from
the host.

¥, A Parameters of function & = y exp(—A1) for
decrease in probability of infection with
increasing age, ¢, of propagules.

B Dummy variable (= H/ MIr L).
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of sufficiency might arguably be applied to the ability of propagules
to germinate and infect. The qualification superfluity, or rather
nonsuperfluity, is an unnecessary restriction, however, when
considering a quantal response. The term pathozone, as defined
above, avoids this difficulty.

A glossary of symbols, used to represent variables and parameters
in the text, is given in Table 1.

BINOMIAL AND NEGATIVE BINOMIAL MODELS FOR
INFECTION

Binomial model. Gilligan (14) and Ferriss (10) proposed simple
models to predict the number of infections, H, that should occur on
M hosts growing in a total volume, V, of soil with uniform
inoculum density of / propagules per unit volume. The expected
number of infections is given by:

H= MN¢ (N

in which, N= [Vis the total number of propagules within the soil
and ¢ is the probability that one host unit is infected by one
propagule. The probability, ¢, is given by v/ ¥ in which v is the
volume of the pathozone for each of the M hosts. Rearranging
equation | allows ¢, and hence v, to be estimated when H, M, N,
and Vare known, thus:

b= H/MN. (2)

The number of infections usually cannot be counted directly and
recourse must be made to a multiple infection transformation
(10,14,18,43) to estimate the mean number of infections per host
unit (H/ M) from the observed proportion of infected hosts.
Allowance for multiple infection, however, may be conveniently
incorporated into a simple binomial model for infection.

Suppose, as before, thata propagule of a pathogen occurs within
apathozone, with probability ¢, and that a host unit (eg, seed, root,
hypocotyl, or [in the case of hyperparasitism] a fungal sclerotium)
becomes infected if one or more propagules occur within the
pathozone. Forasystem involving only one host and one pathogen
propagule, the probability that a host remains uninfected is 1—¢.
For Npropagules and M hosts, the expected number of uninfected
hosts (U) is given by:

U= M(1—¢)". (3)

If Nis known and U/ M is observed, the corresponding value of ¢
may be calculated thus:

¢ = 1—(U M)"'". 4)

In using this binomial model the experimenter has only to score for
presence or absence of infection on each host unit. The assumptions
of the model are twofold: infection ensues if the center of a
propagule occurs within the pathozone; the probability of
occurrence within a pathozone is constant, and independent for all
propagules. Confidence limits for U/ M may be obtained as for a
binomial proportion for a given level of significance. Tables of
confidence limits are given in Snedecor and Cochran (37).
Substitution of the upper and lower limits for U/ M into equation 4,
in turn gives estimates of the variability of ¢ for a single
determination. I am grateful to one reviewer who noted that since
the values calculated by equation 3 vary with the value of ¥, the
estimate of U/ Mincreases with increasing volume of the container,
V, even when inoculum density, /= N/ ¥, remains constant. This
effect is small: for 7=0.1, v=1.0,and V=10, 10%, 10", or 10", the
corresponding estimates of U/ M are 0.900, 0.90438, 0.90479, and
0.90483, respectively.

If v< I, as would be expected in most experimental situations,
equations 3 and 4 may be simplified. Since N = [V, (1—v/ ¥ =
(I=v/ " but (1=v/ 1)Y= (1-v), if v €V, so equation 3 becomes

U= M(1—v).



Similarly, equation 4 may be simplified to
v=1—(Ul M)'".

Relationship between binomial model, the Poisson model, and
original model of Gilligan (14). The Poisson distribution can be
considered as the limiting case of the binomial when the probability
of an event occurring is very small and the number of trials is very
large. Hence, for small values of ¢ and large values of N, ie, high
inoculum densities, the Poisson distribution applies and the
probability of a host unit remaining uninfected is given by
exp(—N¢) in which N¢ is the mean number of infections per host
unit. Hence:

U= M exp(—N¢) (5)
and

¢ =—(1/N) In(U| M).

The model given in equation 2 implies a Poisson model. It is
identical to that of equation 5, when the multiple infection
transformation is used to estimate H/ M. The assumptions for the
Poisson model are the same as for the binomial model, but with the
additional conditions of small ¢ and large N. Consequently the
binomial and Poisson models are identical when ¢ issmalland Nis
large. The mathematical relationship between equations 2and 4 for
& (and hence between the binomial model and the original (10,14)
implied-Poisson model) is given below. From the first term of the
Poisson series:

U/ M = exp(—H| M)
s0
H| M =In(M|U).

Substituting H/ M =1In(M|/ U) into equation 2 gives an estimate for
&, say Pmi, based upon the multiple infection transformation

G = In(M] U)/ N=—In(U] M)/ N

and exp(—dmi) = (U/ M)V,

But EXp (_qun) =1 = ¢mi + ¢me e
and if ¢mi is very small, terms of the order ¢ncan be ignored so:

bmi = 1 = (U/ )"

and hence, for small values of ¢, dmi estimated from equation 2, is
identical to ¢ estimated in equation 4.

Negative binomial model. A random distribution of propagules
of inoculum in soil is assumed in both the binomial and the Poisson
models. It is probable, however, that the pattern of inoculum in

naturally infested soils is clumped (39). The negative binomial
distribution is one member of the binomial family of distributions
that may be used to approximate the distribution of clumped
inoculum, It has two parameters, a mean, m = N¢,and an index of
aggregation, k. The more aggregated the inoculum, the smaller is
the value of k (see, eg, 38). For randomly distributed inoculum, k
tends to infinity and if ¢ is small, the negative binomial distribution
tends to the Poisson distribution. Use of the negative binomial
model to predict the number of uninfected hosts implies no more
than that the inoculum was aggregated. No inference ought to be
made about the mechanism causing the aggregation without
additional independent evidence (43).

For a negative binomial distribution of inoculum in soil, and
correspondingly of infection, the probability that a host unit
remains uninfected, ie, unexposed to infection, is given by the first
term of the negative binomial distribution, (1 + Nep/k)*. Thus :

U= M(1+N¢/k)*
and
¢ = k[(M]| UY"*=1]/ N.
The form of the equation, using v and [ is trivially different:
v=k[(M] U =111

Values for the probability of a host remaining uninfected are given
in Table 2 for the binomial and negative binomial models for
representative values of k, the index of aggregation (22,39). Large
differences between the models are apparent when the product Ne
is relatively large. The discrepancy is greatest when the index of
aggregation is smallest. Taylor et al (39) recorded a value of 0.96 for
k and Hau et al (22) obtained values in the range 2.09 to 2.77 for k
for the pattern of inoculum of Cylindrocladium crotalariae in
naturally infested soil.

Multiple infection to cause disease. Death of a host organ is
relatively easy to score for and is much less equivocal than scoring
forinfection. Itis probable, though, with many host-pathogen and
host-hyperparasite systems, that infection from more than one
propagule would be necessary to cause death. It should be noted
that the concept of a threshold of infection necessary to cause death
is not at variance with Vanderplank’s ‘law of the origin’ (42).
Vanderplank (42) compiled evidence to refute the hypothesis of
Gaiimann (13) and others, that a minimum number of spores is
necessary to establish certain diseases. The evidence, however, is
sufficient only to show that infection can be established by single
propagules; it does not discredit the hypothesis that numerical
thresholds of infection may exist for producing symptoms of
disease or causing death of the host.

The models given above can be adopted to take account of
numerical thresholds of infection. Suppose for example that death
of a host unit occurred only after infection by four or more
propagules and that the occurrence of a propagule within the
pathozone resulted in infection. Equations for the expected
numbers of dead hosts (D) are:

TABLE 2. Effects of using binomial and negative binomial probability density functions to approximate the frequency of occurrence of infective propagules
in the pathozone of, for instance, a seed on estimates of the probability of the host remaining uninfected.

Probability of host remaining uninfected

Mean no. of Total no. of : . : .
propagules within propagules Binomial Negative binomial model
a pathozone (N¢) @' in soil (N) model” K=05 k=120 k=10.0
0.1 0.0001 10° 0.905 0.913 0.907 0.905
1.0 0.001 10° 0.368 0.577 0.444 0.368
10.0 0.01 10° 0.001 0.218 0.028 <0.001
100.0 0.1 10’ 0.001 0.071 <0.001 <0.001

* Probability of infective propagule oceurring in unit volume of soil and infecting the host located therein.

"Probability of host remaining uninfected = (1 — ¢)".
*Probability of host remaining uninfected = (1 + Nep/ k)%,

“Index of aggregation: k = 0.5, 2.0, and 10.0 represent intense aggregation, moderate aggregation, and near-randomness, respectively.
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binomial model,
n=3
D= M[1= X (M¢"(1-¢)¥"]; (6)
(1]

n=

Poisson model,
D= M[l_n; (N®)' exp(—Ne)/n'], (7)
n=0
negative binomial model,
D= M[1— n;i (") (N kY (1 + Nep/ k) &+, 8)

n=10

The second term within the square brackets in equations 6 to 8 gives
the probability that a host will be alive. The equations cannot be
solved directly for ¢, but iterative solution for ¢ is possible. The
effects of different combinations of values for N and ¢ on the
probability of host units remaining alive are compared for the
binomial and negative binomial models in Table 3. The index of
aggregation, k, was set at 0.5 for the negative binomial model, to
represent marked clumping of propagules. The threshold value for
death was put at four infections.

As with the presence or absence of infection, large discrepancies
in the probabilities predicted by the models are apparent when N¢
is relatively large. The probability of escape given by the negative
binomial model, for aggregated propagules, was less than or
approximately equal to that given by the binomial model, for
randomly distributed propagules, when the mean number of
propagules per pathozone, N, was < 2.24 (with N=2.24 X 10*and
¢ =0.01, for the binomial model). Above that value the chance of
hosts escaping death was much greater when propagules were
clumped than when they were randomly distributed. Note, however,
that the cross-over value of 2.24 propagules per pathozone is not
unique for this system. The variables N and ¢ always occur as the
product, N¢, in the negative binomial model, but they are treated
separately in the binomial model. Hence, there are numerous
possible values given by the binomial model for each value of the
negative binomial model that corresponds to a given mean, Ng.
Nevertheless, the discrepancy between the estimates from the
binomial and negative binomial models highlights the importance
of first checking the distribution of inoculum within soil before
selecting the model for the infection zone.

TABLE 3. Effects of using binomial and negative binomial density
functions to approximate the frequency of occurrence of infective
propagules in the pathozone of a susceptible host, on estimates of the
probability of a host escaping disease’

Probability of host
escaping disease

Mean no. of Total no. Negative’

propagules within of propagules Binomial® binomial
a pathozone (Ng) ¢" in soil (N) model model
0.01 0.0001 10° >0.999  >0.999
0.10 0.001 10° >0.999  >0.999
1.00 0.01 10° 0.982 0.919
2.50 0.01 2.5% 10° 0.758 0.759
5.00 0.01 5.0 X 10° 0.264 0.602
10.00 0.01 10° 0.010 0.455
100.00 0.1 10° <0.001 0.154

"Hosts were deemed to have escaped disease if they encountered <3
propagules within the pathozone,
"Probability of infective propagule occurring in pathozone and infecting the
host located therein. n=1
“Probability of host remaining uninfected = X (%) d"(1—p)Nn,
0

n=
n=13

“Probability of host remaining uninfected = % (RN (NS R+
n=0

N/ Ky &+ m
The index of aggregation was set at 0.5,
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SHELL VERSUS DISPLACEMENT MODELS

The model originally proposed by Gilligan (14) included the host
volume in the pathozone. Thus, for a radially symmetrical patho-
zone, the radius of the pathozone is the sum of the radii of the host,
say a root (r,), and inoculum (r,) plus a distance w across which the
pathogen can grow to cause infection. The volume of the pathozone
for a root uniformly susceptible along its length (L) is, therefore,
calculated by using the equation for the volume of a solid cylinder,
of volume v that can be represented by:

v=alr,+w+r).

Such a model may be called a displacement model. It assumes that
propagules within soil displaced by growth of host as well as those
in the soil immediately surrounding the host should all take part in
infection, if the pathozone extends far enough. Movement of roots
through soil may be regarded as effecting localized changes in the
bulk density of soil as soil is squeezed outward from the axis of the
path of the growing root. A search of the literature has not revealed
the radial extent of the change in bulk density for roots of given
diameter. But if the furthest extent of the change in bulk density is
less than w + r, from the root surface, then the displacement model
holds.

Leonard (27) and Ferriss (10) challenged the displacement
model. They proposed instead a model in which the volume of the
host is excluded from the pathozone. The pathozone for a root
uniformly susceptible along its length, L. is therefore a hollow
cylinder of volume v that can be represented by:

v=aLl(r,tw+r)—r?

This may be regarded as a shell model. The primary use of the
models proposed by Gilligan (14,15) and Ferriss (10) was to
estimate the size of w. Working with the original form of the model
given in equation 1, the equation for the calculation of w is:

w(displacement model) = B* = (r, + r)

in which B= H/ MIr L. Ferriss (10) correctly noted that, for certain
values of infections per root (H/ M) and inoculum density (J), it was
possible to obtain negative values for w from this equation. Indeed,
this happened with my reanalysis (14) of the data of Rouse and
Baker (33) and I adjusted these illogical values to zero. Ferriss (10)
presented an alternative equation for the calculation of w:

w(shell model) = (B + r2)% —r, ©)

and suggested that since B=0, negative values for w would not be
obtained. Unfortunately, in doing so, Ferriss had altered the
meaning of wso that ‘w’in equation 9 was actually equal to the sum
of wand r,. The equation for w for the shell model should therefore
be:

w(shell model) = (B+r2)% — (r, +r) (10)

Negative values for w would be obtained from equation 10, ifr,>[B
+ r,’]% — r,, although this inequality is unlikely to be satisfied,
except in few cases. The models summarized in the form of
equation | and indeed the models derived above, involve deter-
ministic approximations for (eg) ¢, and hence w, to what is a
stochastic process. Negative values may therefore be attributed to
w, when, due to chance, the number of successful infections is
unusually low for a given inoculum density, Whether or not such
negative values should be included in the estimation of w is still
partly a subjective judgment. Given, however, that negative values
may arise due to natural variation, I am inclined to include them in
the estimation of w.

The practical importance of the difference between the shell and
displacement models increases with the size of r, relative to w +r,.
Consider, for example, the infection of sclerotia of Sclerotinia
sclerotiorum by Coniothyrium minitans (40). Suppose the mean



radius of sclerotia is 0.5 mm, propagules of the hyperparasite
comprise single pycnidia, of mean radius 0.6 mm (40), and w is
assumed to be 0.2 mm. There is little difference between the
estimates from the shell and displacement models for the probability
of sclerotia escaping infection (Fig. 1A). However, if w + r; is
reduced to 0.4 mm, as might happen if fragments of pycnidia were
incorporated into soil, the discrepancy between the two models
becomes large (Fig. 1B). Unfortunately, it is doubtful whether, in
all but a few simple systems, techniques for investigating
infection of below ground host units are sufficiently refined to
allow practical distinction between the two models. The example
given above is for illustrative purposes only. Judgment as to the
applicability of the shell or displacement models needs to be based
upon extraneous knowledge. Thus, one reviewer noted that if the
host unit is large, such as a carrot, the displacement model is more
likely to apply. Whereas, if the host unit is small and is formed in
the soil pore spaces, then the shell model would apply.

ALLOWANCE FOR DISTANCE FROM HOST

It was assumed in the derivation of the models presented above
that occurrence of a propagule in a pathozone is sufficient to ensure
infection. Clearly, this is an oversimplification. Several
investigators (19,32,36) have shown that the probability of germina-
tion of pathogen propagules declined with increasing distance from
the host, while Punja and Grogan (33) and Henis and Ben-Yephet
(23) demonstrated that the probability of infection declined with
distance of the infective propagule from the host. A more realistic
expression of the probability for infection of a host unitby a single
propagule is given by:

host propagule propagule is propagule
Plis = p {occursin ) XP{ capable of occurs in
infected pathozone infecting host pathozone

Let 0 be the probability that the propagule occurs in the pathozone
and ¢ be the probability of the propagule infecting the host,
conditional upon its occurrence in the pathozone. The value of 6 is
numerically equivalent to ¢, as used above, but unlike ¢ it is used
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Fig. 1. Comparison of shell (

only to denote the probability of occurrence in the pathozone and
not the probability of infection given occurrence.

Consider the infection of a root of radius r, and length L, by a
fungal sclerotium of radius ;. If the root is uniformly susceptible to
infection over its entire surface, and the shell model is assumed to
apply, then the infection zone is described by a hollow cylinder of
outer radius R (with R=r, + w + r;) and inner radius r,. Then:

=" sclerotium occurs | sclerotium sclerotium can
at distance r occurs infect root
P 4 from center of within XP 4 froma
v pathozone pathozone distance r

The probability that the sclerotium can infect the root from a
distance r could be expanded to allow for the conditional
probabilities of germination, growth to the host, and the initiation
of infection. It is left as a single expression, however, for simplicity
in deriving the model. The probability that a sclerotium occurs at
distance r from the center of the pathozone is derived first. Strictly,
for a continuous random variable, the probability that a sclerotium
occurs at a given distance r is zero. It is necessary to work, instead,
with the probability that a sclerotium occurs betweenrand r + A r.
Thatis the probability that the center of a sclerotium occurs within
the wall of a hollow cylinder of length L, and approximate area
2 Ar,in which Aris small enough to ignore the difference between
the radii of the inner and outer surfaces of the cylinder.

center of sclerotium occurs

sclerotium within _ i
occurs between | pathozone = 2nrLAr | T 2arLAr,

randr+Ar r
from which it follows that the probability density function is

2r/(R*—17) (11
The probability that a propagule can infect a host decreases with
distance from the host and approaches zero at the outer limit of the
pathozone. A simple, empirically selected expression for the
reduction in probability of infection with distance, r, is given by:

=}

EXPECTED PROPORTION OF INFECTED SCLEROTIA
o
o

] 1 1
0'00 3 6 9 12

INOCULUM DENSITY X 103 ( UNITS /CM?)

) and displacement (——) models for infection of sclerotia, of radius 0.05 cm, of Selerotinia sclerotiorum by Coniothyrium

minitans (40). A. Radius of outer limit of pathozone, beyond which probability of infection is zero, was 0.13 cm. B. Radius of outer limit of pathozone was
0.01 cm. The proportion of infected sclerotia was estimated from 1—(1—v/ )"V in which Vis the total volume of soil ( 10" em®) and /is the inoculum density per
unit volume. For the shell model, v is the volume between two hollow spheres, an inner one with radius 0.05cm and an outer one with radius equal to the outer
limit of the pathozone. For the displacement model, v is a solid sphere with radius equal to the outer limit of the pathozone.
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P|propagule can infect | = Be ™ r< R. (12)
root from a distance r

That the probability of infection should decrease exponentially
with distance is intuitively appealing. The power of the distance, as
well as the parameters e and B, however, may vary with the host
and pathogen. The function r* is proposed here because it gives a
less rapid decline in probability of infection close to the root surface
than would the first power of r. The probability density function,
Bexp(—ar’) is initially concave downward rather than concave
upward as with exp(—ar) (Fig. 2). Both properties agree with the
limited experimental data available for infection of bean seedlings
by Rhizoctonia solani (23), of sugar beet petioles by Sclerotium
rolfsii (32), and of wheat roots by Gaeumannomyces graminis
(unpublished). The function r* would give an even slower rate of
decline in probability of infection close to the root than * (Fig. 2).

Estimates, & and 3, of the parameters of equation 12 may be
obtained from the logarithmic form of the equation, In(p,) =In B —
&, in which P, is the observed proportion of propagules that can
infect the host from a distance r, as obtained by experiment. The
parameter Rcannot be estimated from equation 12. It may instead
be determined directly from the placement experiment, as the
distance closest to the root from which no infection is observed to
occur. Because retransformation from the logarithmic to the
original form of equation 12 involves certain statistical difficulties
concerning error structure, alternative methods of curve fitting
may be preferred (37).

For the shell model, the probability that the sclerotium is capable
of causing infection, if it occurs within the pathozone of the root, is
given by combining equations 11 and 12:

R
W= f [2rB/(R*—r) exp (—ar’)dr. (13)

r(

Integration by substitution (details available from author) gives:

v = {B/la(R=r)l[exp (~ar)—exp (—aR)].  (14)

A corresponding expression for the displacement model in which
the constants of integration are 0 and R is given by § = Bll—
exp(—aR’))/aR’. This expression is simpler than equation 14, but
no allowance was made in its derivation for changes in bulk density
surrounding the growing root, within the infection zone.

The probability that a host unit remains uninfected when it
occurs in soil of volume F, containing a total of N randomly
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Fig. 2. Comparison of three functions, of the form y = 8 exp(—ar") for the
probability () that a propagule can infect a host organ at a distance r, The
parameters « and 8 were set at 1.0.
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distributed and potentially infective propagules is (1 — 8)". For a
cylindrical pathozone, of length L, 6 is estimated by = R°L/ V and:

p= ; | =[7BR’LlaV (R* = r’)] [exp(—ar)
, (15)
—exp(—aR) ]V

APPLICATIONS AND LIMITATIONS OF THE MODELS

The simple binomial and negative binomial models may be used,
as with the initial models of Gilligan (14) and Ferriss (10), to
estimate the width of pathozones from population studies. Alter-
natively, if the extent of the pathozone is known, the models may be
used to predict the proportion of uninfected or of diseased hosts.
The original models (10,14) assume, however, that the probability
of infection, ¢, is constant for all propagules that occur in a
pathozone. Variation in ¢ may arise due to: secondary infection
from infected tissue rather than from soil inoculum (9), interaction
between host and pathogen such that the probability of subsequent
infection on a previously infected root may be altered (16), and
variation in host density. If host density is high relative to
propagule density, such that single propagules frequently occur in
two or more pathozones, the inoculum potential of the propagules
(sensu Garrett [12]) may not be sufficient to permit successful
infection of all encountered hosts. If Nis held constant and M (the
number of hosts) is varied, plots of U against M should yield
straight lines for both the binomial (for randomly distributed
propagules) and the negative binomial models (for clumped
propagules), if ¢ is constant.

There are three unknowns (a, 8, and R)inequation 15, the more
complex binomial model in which allowance is made for distance of
the propagules within the pathozone from the host surface. Clearly,
therefore, equation 15 cannot be solved, as was possible for
equations 2 or 4 for the simple models, to estimate Rand hence the
width of the infection zone. The model is proposed instead as a
basis for analytical modeling (26) of infection of subterranean plant
organs after estimation of «, 8, and R from experiments, as
outlined above. The model can be adapted, with slight adjustment,
for spherical infection zones such as might be expected to surround
seeds or, in the case of hyperparasitism, sclerotia. The expression
for the probability of a host remaining uninfected for a spherical
infection zone of inner radius, r,;, and outer radius, R, and shell
model is:

R
Y= f [F'B/(R*—r )] exp (—ar’) dr (16)
r.m‘

Integration by substitution, followed by integration by parts
(details available from author) gives:

¥ ={ B2 (R-r, ]} lexp(=ar,) (1 + ar)

—exp(—aR’) (I +a RY)].

[tis envisaged that further refinements may be made to the models.
Forexample, the effect of aging of propagules may be incorporated
into the model by the use of experimentally determined values of a,
B, and R, over time. Alternatively, functions such as a = e iy
which yand A are constants and ¢ is age of propagules, may be used
to approximate the change in the probability of propagules
achieving infection. With increasing sophistication, however, it is
likely that computer simulation, with allowance for stochastic
variation, would be of more use to the experimenter than single
analytical solutions.

There are two principal limitations to the application of the
models presented above. The first is the need to estimate the
proportion of the total soil population of propagules of a given
pathogen, or parasite, that is infective. While such estimation is
difficult for many spore-producing fungi (28), even after artificial
infestation of soil, it is much less difficult for many sclerotia-



producing fungi, to which the models are primarily directed. The
second limitation arises if only a portion of the host is susceptible to
infection. If, however, the proportion of external surface of the host
that is susceptible can be estimated, appropriate adjustment could
be made for the volume of the pathozone.
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