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ABSTRACT

Jeger, M. J. 1984. Relation between rate parameters and latent and infectious periods during a plant disease epidemic. Phytopathology 74: 1148-1152.

The observations that epidemic progress is often adequately described by
a rate parameter (r) and initial amount of disease (y,), and that calculated
values of Vanderplank’s R decrease during an epidemic, are used to obtain
explicit time-dependent relationships between r and R during entire
epidemics. Analysis of these relationships indicates that R can be calculated
from epidemic data only during a finite period of time and that there are

constraints on the combinations of parameter values possible in such
epidemics. Further theoretical threshold results for epidemics are obtained
and related to the doubling time—an important parameter in population
ecology—of the epidemic. Vanderplank’s R cannot easily be estimated for
epidemics in which r is not approximately constant.

An interesting feature of the modeling of biological phenomena
is the interplay between descriptive models and those invested with
a higher level of biological realism, the former often used in
conjunction with practical experimental programs and the latter
serving largely theoretical purposes. Constructive interplay is often
necessary for experimental and theoretical studies to advance in
step rather than to diverge along separate paths. Vanderplank (13)
introduced two rate parameters into plant disease epidemiology: r,
the rate of disease increase per unit of disease, is essentially the
intrinsic rate of disease increase dependent on the disease measure
used (1,2); and R, the rate of increase per unit of infectious disease
(eg, the diseased plant tissue actually producing inoculumy), is more
realistic biologically. The first rate, r, is defined in terms of the
logistic equation

dy/dit =ry[l— ], (1)

where disease y, is usually, but not necessarily, measured on a
proportion scale and a disease asymptote of unity is assumed. The
rate R is defined in terms of differential-difference equations that
incorporate the time lag attributable to a latent period, p (ie, the
time from onset of infection to sporulation)

dy;,u"df = Ry;—p[l = y:] (2]

and also a finite infectious period, i (ie, the time from onset to
cessation of sporulation)

dy:[dt = R [yi-p = yi-i-p] [1 — ¥]. (3)

Vanderplank dissociated himself from the logistic equation as a
model of disease increase—see Vanderplank (14) for a recent
statement of his views—largely because of the usual requirement
for r to be a constant parameter. There is arguably some ambiguity
in this view in that disease on a logit scale often does increase
linearly with time; r is then estimated as the regression coefficient of
the line and indeed this procedure was used by Vanderplank (13).
The estimation of r by linear regression, although sometimes
abused (4), has proven useful for comparative studies in plant
breeding, fungicide evaluation, disease management, and cultural
practice. Elaborations of the logistic equation with one or more
additional parameters sometimes give marginally better fits to
data, but this is not particularly relevant. The logistic equation with
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the assumption of a constant r remains the standard of comparison
(10) for experimental data and other models in plant
epidemiological studies. Some reasons why r often appears
constant with time have been considered (16) but are not the
concern here.

The differential-difference equations (equations 2 and 3), or
other models that account for the various categories of disease
(5,9,11), represent a higher order of biological realism and a
richness of dynamic behavior not present with the logistic equation.
Despite these features and despite the derivation of theoretical
results of thresholds and asymptotic behavior (5,13), the use of the
more realistic models has made little impact on experimental
studies. Vanderplank (13) investigated the relationship of R with r
during the early stages of an epidemic by ignoring the term 1 — y,
and equating the right-hand sides of equation 1 and either equation
2 or 3. On the assumption of constant r, and without progression
from the infectious to the postinfectious condition (ie, without
removals), then

R=rexp (pr) (4)
and with removals,
R=r/[exp(—pr) — exp(—(i + p)r)]. (%)

In both cases, an assumption of constant r, p, and i implies a
constant value for R, the rate parameter with biological meaning. If
the entire epidemic is considered, by including the term [ —
Vi, then the relationship between rand R has not been investigated.

Vanderplank (13) obtained constant r values for late blight
epidemic data reported by Large (8). Values of R were then
obtained numerically by using assumed and constant values for the
latent and infectious periods of Phytophthora infestans (7). In the
case without removals, the relationship between Rand the amount
of disease was linear and decreased to R = r. In the case with
removals, the relationship between R and the amount of disease
was again linear and decreased initially but reached a minimum
value at y <I and then increased. Vanderplank gave convincing
biological reasons why R must decrease if r remains constant
during an epidemic. He then argued that because there is no known
factor that could cause the late increase in the numerical value of R,
then r could not be a constant at this stage of the epidemic. It is not
clear whether these trends in R are real consequences of equating
the dynamics of the logistic and differential-difference equations or
are unique to the particular data. The purposes of this paper are to
obtain explicit relationships between the two rate parameters, on
the assumption that the logistic and differential-difference
equations describe real epidemics; to ascertain the period of time
during which reliable estimates of Vanderplank’s R can be made



from experimental data; and to explore the dependence of the
relationship with the latent and infectious periods and other
epidemiological parameters.

MATHEMATICAL ANALYSIS

Considering the case without removals, if equations | and 2 are
to describe the same dynamics, then

R=r 3/ Yrp. (6)

It can readily be shown that y,/y,-, cannot be constant and hence
one or both of r and R must be a variable unless, trivially, p =0 or
r=R=0.

If r is a constant, then equation 1 can be solved to give

= 1/[1+ Aexp(—ri)], (7

where A is the constant of integration (if y, is the initial amount of
disease, A = (1 — y,)/y.), and at time ¢ — p,

Ye-p = 1/[1 + A exp(pr) exp(—rt)]. (8)

Substituting equations 7 and 8in equation 6, and rearranging, gives

R = rexp(pr)/f(t), 9)

where f(r) = [1 + A exp(—rt)]/[exp(—pr) + A exp(—r1)].

In particular, fors=0and large A, R=rexp (pr),and as r—, R
=r. Furthermore, dR/dr <0 for all 1 >0 and hence R is a strictly
decreasing function of time. Values of R can be calculated from
equation 9 for given values of A, r, and p.

Considering the case with removals, if equations 1 and 3 are to
describe the same dynamics, then

R=ryi/[Yi-p = yi=i-p)- (10)

If r is a constant, then equation | can be solved to give y, (equation
7), i-p (equation 8), and

Vimi-p = 1/[1 + A exp((i + p)r) exp(—ri)]. (11)

Substituting equations 7, 8, and 11 into equation 10, and
rearranging, gives

R =r[[exp(=pr) fit) — exp(—(i + p)r) g(1)], (12)

where f(7) is as before and g(r) =[1 + A exp (—r1)]/[exp(—(i + p)r) +
A exp(—ri)].

In particular, forr =0 and large A, R=r/[exp(—pr) —exp(—(i +
p)r)], but as — 2, R increases without bound. Differentiating
equation 12 with respect to time and setting to zero gives dR/dt =0
when

&) =[1+ Aexp (—r1)]/[exp(=(i + p)r) + A exp(—rt)].
df(t)/dt = exp(=ir) dg(t)/ dt. (13)

Differentiating f(¢) and g(¢) gives cla_’f(:}{d: =—rAexp(—rt) }[exp(—
pr)— 1]/[exp(—pr) + A exp(—rt)]"{ and dg(¢)/dt=—rA exp (—rt)
[exp(—(i+p)r)=1]/[exp(~(i + p)r) + Aexp(~rt)]'} . Substi-
tuting into equation 13, rearranging, and collecting terms, A
exp(—rt)=(BAi—alAz)/(A2— A1), where e =exp(—pr), B=exp(—(i
+p)r)and Ay = Ve (1 — a), A2 =/ (1 — B). Solving for t,

t=1In[A(A = M)/ (BA — aA)]/r. (14)

The minimum value of R at this time can be calculated from
equation 12 for given values of A, r, p, and i and the corresponding
amount of disease from equation 7. It is important, however, to
check that combinations of values of A, r, p, and 7 are permissible
given the constraints of equation 14. Clearly, as natural logarithms

are being taken, then the term in square brackets must be positive
for ¢ to be defined, and greater than unity for time to take only
positive values.
As a =exp(—pr) and B =exp(—(i + p)r), B <a foralli> 0.
Manipulating this basic inequality eventually yields

B <al,. (15)

Hence the denominator of the term in square brackets (equation
14) is negative; this implies that A, — A, must also be negative
because A is necessarily positive. Manipulating the inequality
yields A <A, if and only if

Bta<l. (16)

Hence the first restriction to be placed on r, p, and i is that
exp(—(i + p)r) + exp(—pr) <l. This inequality is equivalent to

i>—In[exp(pr)—1]/r. (17

Because 7 is positive, then the inequality given by equation 17
necessarily holds unless In [exp (pr) — 1]1<< 0, in which case it may
not. Again, manipulation of the inequality shows than In[exp (pr) —
1]is negative if and only if p <In2/r = t,, the doubling time during
the early logarithmic stage of the epidemic. If p is greater than the
doubling time, then there is no lower restriction on the length of the
infectious period, but if p is less than the doubling time, then a
lower limit results as given by equation 17. Note that the inequality
given by equation 17 cannot be inferred from the normal threshold
result for an epidemic to increase, ie, i R =1, which also must hold.

The time taken for R to be at a minimum (equation 14) is also
dependent on the value of 4, and hence of y,, the initial amount of
disease. If the time is to take only positive values, then we require

Yo <[1+ (BN —ah2) /(A2 — A)] (18)

A sufficient condition to ensure the inequality given by equation
18 is that y, <| A2 — Ay | /2, where the modulus symbol indicates an
absolute value. Details of the derivation of the inequalities given by
equations 15—18 are available from the author on request.

RESULTS

Figs. | and 2 show, respectively, in the case with no removals
(equation 9), the variation of R with time for values of 4 and of the
product (pr) giving the same value of R at 1 = 0. Values of A are
about equal to 1/y,, where y, is the amount of initial disease: the
smaller the value of y, the longer R remains approximately
constant (Fig. 1). However, it takes an order of magnitude change
in A (and thus in y,) to achieve a twofold to threefold change in R
after 20 days of the epidemic. When the product (pr) is varied, there
is a more pronounced effect on R (Fig. 2). For each value of pr, the
curves eventually approach the lower limit set by » but do so ata
rate inversely proportional to p. The length of time for R to
decrease to r is longer for higher values of pr.

Fig. 3 shows the influence of introducing an infectious period of
varying length (equation 12); the shorter the infectious period the
higher the value of Rinitially and the earlier the minimum value of
R is reached. The curves approach the lower limits set by the r
values but then increase.

Equation 14 was solved for permissible combinations of
parameter values. The positive time values that resulted are plotted
in Fig. 4inrelation to r for different lengths of the infectious period.
The intriguing feature of this plot is that at low r values, there are
large increases in the time taken for R to be a minimum for only
small increases in r. There is an optimal value of r that maximizes
the length of time before Risa minimum and then a steady decline
in time values for higher values of r. An expression for the optimal
value of r can be obtained by differentiating equation 14 with
respect to r, setting to zero, and solving, but the expression is
cumbersome and of little direct value.
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Fig. 1. Values of Vanderplank's R (day™') as a function of time ¢ (days)
(equation 9) for three values of A = (1 — y.)/ v, where y, is initial disease at 1
=0(r=0.25day ', p = 10 days).
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Fig. 2. Values of Vanderplank's R (day™') as a function of time r (days)
(equation 9) for three values of pr giving the same value of Rat r=0(A4 =
99).
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Fig. 3. Values of Vanderplank’s R (day ') as a function of time ¢ (days)
(equation [2) when an infectious period i (days) of varying length is
introduced (r = 0.25 day ', p = 10 days, A = 99).
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Fig. 4. Period of time ¢ (days) before Vanderplank's R (day ') is at a
minimum (equation 14) as a function of the intrinsic rate of disease increase
r (day™') for infectious periods i (days) of varying length (p = 10 days, 4 =
99).
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Fig. 5. Minimum values of Vanderplank’s R (day ') as a function of the
intrinsic rate of disease increase r (day™') for infectious periods i (days) of
varying length (p = 10 days, 4 = 99).
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Fig. 6. Values of disease (y) at which Vanderplank’s R (day ') is a minimum
as a function of the intrinsic rate of disease increase r (day ') for infectious
periods i (days) of varying length (p = 10 days, A = 99),



The minimum values of R (equation 12) and the corresponding
amounts of disease y (equation 7) are plotted against rin Figs. 5and
6, respectively, for different lengths of the infectious period. These
figures are best viewed vertically. At low r values, the amount of
disease when R is at a minimum, as with the time taken, is very
sensitive to small changes in the r value; at high r values, the
epidemic has virtually gone to completion before R is at a
minimum; the minimum values of R, however, are less sensitive to
changes in r and more sensitive to changes in the length of the
infectious period.

Finally, the minimum values of i that are necessary for the
inequality given by equation 17 to hold are plotted against p for
values of p less than the doubling time of the epidemic (Fig. 7).
Clearly, the lower the r value the longer the infectious period has to
be if the differential-difference equation is to represent adequately
epidemics for which r remains approximately constant.

DISCUSSION

It must be stressed that by equating the right-hand side of the
logistic equation with that of equation 2 or 3 (ie, assuming the
equations describe the same dynamics) immediately restricts the
range of solutions of the differential-difference equations. There
are infinitely many solutions for equations 2 or 3 that do not
correspond to a logistic curve and the assumption of constant r.
However, given the many examples of epidemic curves that are
adequately described by the parameter r, then it is entirely
reasonable to estimate the behavior of R, the biologically
important parameter, using the techniques described here. The fact
that many epidemics appear logistic, with apparently constant r,
may reflect the quality of data collected. Where r can be shown to
vary significantly with discontinuous random process due to
environment, then the present techniques cannot be used to
estimate Vanderplank’s R. In those cases, it will be necessary to
develop models in which r is strictly a time-dependent variable,
using perhaps a sinusoidal function (15). Dependent on the
tractability of the model, new versions of equations 9, 12, and 14
may be obtained but are unlikely to be any less complex.

Vanderplank (13) analyzed the particular data of Large (8) to
obtain relationships between r and R for different values of the
latent and infectious periods. Equations 9 and 12 show that this is
possible in the general case: if r is constant, then R is an explicit
function of time depending on the functions f'and g. The similarity
of these equations (equations 9 and 12) to the equivalent ones for
the early stages of an epidemic (equations 4 and 5) can be noted by
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Fig. 7. Minimum length of infectious period i (days) necessary for the
inequality given by equation 17 to hold, as a function of the latent period p
(days), where p <the doubling time during the logarithmic stage of the
epidemic (t;=In2/r), and for different values of the intrinsic rate of disease
increase r (day ™).

setting fand g equal to unity. Solving equations 9and 12, using the
values of A4, r, p, and i assumed or computed by Vanderplank (1 3)
from Large’s data, gives R as an explicit function of time. In
particular, the minimum value of R (3.51 day™") occurs, by
application of equation 14, after 19 days of the epidemic and
corresponds to a value of disease of 0.86 (13, Fig. 8.2).
Vanderplank’s conclusion that it is only reasonable to accept a
constant r value while R is strictly decreasing is an important but
neglected insight that can now be developed further.

From a practical standpoint, equation 14 allows for the a priori
determination of the period of time for which the biologically
important parameter can be estimated. It sets an upper limit to the
time during which r can be assumed to remain constant, and hence
estimated using conventional procedures. The threshold value of
initial disease should not be exceeded if rand Rare to be estimated
reliably, thus emphasizing the importance of disease assessments
early in the epidemic.

Further findings obtained by means of equation 14 are of note:
first, there is an optimal intrinsic rate of disease increase that
maximizes the time before R is at a minimum; second, when the
length of the latent period is less than the doubling time of the
epidemic, there is a lower limit to the length of the infectious period.
These findings concerning life strategies (ie, constraints on the
combinations of values for the various epidemiological
parameters) may be of value in developing a more ecological
perspective on plant disease epidemics. Is there any evidence for, or
a biological interpretation of, an optimal intrinsic rate of disease
increase in the sense described? Is there any evidence that where
intrinsic rates of disease increase are low, the length of infectious
periods must exceed a certain minimum value? According to Kranz
(6), there are few examples of inequalities being used in
epidemiology. Earlier threshold results (5,13) specify the minimum
conditions for an epidemic to increase; the inequalities developed
here specify stronger conditions if epidemic increase is to appear
approximately logistic.

The relationships between the two rate parameters and the latent
and infectious periods established in this paper are not simply of
passing theoretical interest. There are many questions concerning
practical epidemiological problems that require further theoretical
advances. For example, models of selection for biocide resistance
that incorporate latent period and the simple relationship between r
and R during the logarithmic stage of an epidemic (12) have been
proposed. As pointed out by Jeffery and Kable (3), selection for
resistance is not likely to occur during the logarithmic phase only. It
is important that relationships between r and R that hold over
many epidemic cycles, especially as influenced by the length of the
infectious period, be considered if only to examine the robustness
of conclusions already drawn from such models.
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