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It is a paradox that there are few reliable estimates of crop losses year. Although the number of years necessary to achieve precise
due to plant diseases, even though plant pathology has developed crop loss estimates is uncertain, James (16) recommends three.
as a separate science largely because of those losses (15,23,30). This More years may be needed with a highly variable environment.
lack of loss data may have retarded the progress of plant protection Third, experiments should be conducted with the major cultivars
as much as any other single factor (23). grown in the region of interest. If possible, these cultivars should

The concept of Integrated Pest Management (IPM) developed in represent a range of susceptibilities to the pathogen.
the 1970s, but one of the biggest limitations to implementing IPM Fourth, multiple levels of a treatment should be applied to
programs has been the paucity of information on crop losses (2). potentially achieve multiple levels of crop loss rather than the
Total loss of a crop due to all pests has often been "estimated" at traditional two-level experiments of "infected" and "healthy"
greater than 100% (36). For example, in their review of the treatments which are still common today. Multiple levels of crop
literature, Pimentel et al (36) found that "estimates" of apple losses loss can be obtained by varying inoculation or protection methods,
due to diseases, insects, and weeds totaled 126%! It is no longer crop cultivars, or locations (16). Plants (plots) can be inoculated at
acceptable to merely guess the loss due to pests in general, and different times and frequencies, and the concentration of the
diseases in particular. Optimal controls, or combination of inoculum can be altered. Because it is difficult to obtain uniform
controls, cannot be determined without reliable loss data. Clearly, and repeatable levels of disease intensity with variation in
no IPM program will be acceptable without valid crop loss inoculation, much of the crop loss research still relies on natural
estimates. infection and variation in other treatments to produce multiple

This paper presents reviews and summaries of selected concepts levels of disease intensity. Protectant chemicals can be used to vary
in measuring, modeling, and predicting losses caused by plant the level of disease, although tests should be performed to
diseases with emphasis on the types of experiments necessary to determine if the chemicals affect yield in the absence of disease (16).
obtain data useful for developing loss models. Empirical models Other forms of protection can also be used, such as oil sprays to
are described, evaluated, and then compared. prevent infection by stylet-borne viruses (46). Isolines of the crop

that differ only in genes for susceptibility to a given pathogen can be
MEASURING CROP LOSSES used to vary disease intensity, but such isolines are not very

common. Multiple levels of diseases may be obtained by planting in
Crop loss is defined as the measurable reduction in quantity and geographical areas that vary in the prevalence of a particular

quality of yield (16,45). Zadoks and Schein (45) provide a thorough pathogen. In this approach, unfortunately, the effects of disease
description of the categories of yield as well as the many forms of intensity are confounded with effects of several other factors at
direct and indirect losses caused by plant diseases. Yield can be each location, such as weather and soil properties.
represented and analyzed in original units (eg, volume or weight) or Fifth, disease intensity often should be used as a covariable in the
as a percent (proportion) of a disease-free control. Percent data will analysis instead of the preassigned treatment level. Since intensity
not give the same results as data with units (25). Unless indicated for most diseases can be represented on a continuous scale, and
otherwise, only quantity losses due to disease or diseases in resulting disease intensity may be very different from that intended,
combination with crop and environmental variables will be the most powerful statistical analyses utilize this information to
discussed in this paper. derive precise crop loss estimates.

Designing experiments. James (16), and James and Teng (23) Experimental design restrictions. There are many restrictions on
presented a detailed review of the methodology for measuring crop experiments for determining crop losses. Plot size and shape,
losses. Some of their suggestions are elaborated herein, especially interplot distance, and number of replications should be selected to
as to how they relate to experimental designs. Five factors should produce results representative of losses in commercial fields. Few
be considered in designing experiments for measuring crop loss crop loss researchers have evaluated these factors. Preliminary
(16). First, the experiments should be conducted in more than one experiments should be conducted to determine sample sizes needed
location, and preferably in areas where the crop is normally grown to produce results with a certain level of precision (19). Often there
and the disease is important. In some circumstances, however, is a conflict between the desired level of precision and that obtainable
conducting experiments where the pathogen is not found permits in the experiment within realistic limits of time and resources.
more thorough control over the level of disease intensity. For The three most commonly used experimental designs for
example, we are determining losses of maize due to maize dwarf determining the effects of disease intensity on crop losses are:
mosaic virus (MDMV) in plots in northern Ohio where the virus is randomized complete block (RCB), split plot, and Latin square.
usually not present in order to have control plots nearly free of Each design has advantages and disadvantages (13,35). Latin
disease (J. K. Knoke, R. Louie, and L. V. Madden, unpublished), squares are the most limited because they are not very powerful

Second, experiments should be performed for more than one with less than five treatment levels, but become unmanageable with
more than eight (35). The split plot design, originally developed for

The publication costs of this article were defrayed in part by page charge payment. This agronomic applications, may or may not be a satisfactory
article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. § alternative to the very common RCB. To compare these two
1734 solely to indicate this fact. designs, consider an experiment with four replications (R), 10
©1983 The American Phytopathological Society cultivars (C), and five levels of disease intensity (D). Table I
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contains the degrees of freedom breakdown for a RCB design, split Nevertheless, in a survey of papers from 1948 to 1982 dealing with
plot design with D as the subplot, or split plot with C as the subplot, empirical modeling of crop loss as a function of disease, I found
The number of degrees of freedom (df) for the appropriate error "-57% considered only a single independent variable; "-77% of the
term is one measure of the power of the analysis of variance papers considered a single predictor or compared single to multiple
(ANOVA) tests (13). As is usually the case, assume that the predictors. These papers demonstrated adequate to excellent
interaction of R with the whole plot serves as the error term for the success using single predictors. A partial explanation for this
whole plot, and the other interactions with R are nonexistent. With success is that disease at a particular time is actually a summation
RCB, there is only one error term which has 147 df. With D as the or integration of the change in disease levels throughout an
subplot, there are 120 df for testing D effects, and only 27 df for epidemic (26,29). Disease at time t is highly correlated with disease
testing C effects. With C as the subplot, there are 135 df for testing at time t- 1 (26). By considering only one predictor, a researcher is,
the effect of C, and only 12 df for testing D. Clearly, on the basis of in essence, using a great deal of information about a given
df alone, RCB is the best approach for testing the significance of C epidemic.
and D. Split plot designs, however, have advantages. If The other single predictor that has often been used is ADPC,
randomization is restricted because it is impossible to randomly which integrates the level of disease for the entire epidemic. A
assign all levels of all factors to locations in a field, then split plots similar predictor is the weighted disease average of Hills et al (14).
may be necessary. Additionally, adjacent plots or rows may be Approximately nine percent of the crop loss modeling papers in the
much more homogeneous than separated plots or rows. This survey considered ADPC or the weighted disease average as the
increases the sensitivity of the split-plot analysis, even though the df main predictor; "20% of the papers used ADPC with other
are lower. If a split plot is used, the division of subplots should be predictors.
chosen to provide the higher df for the factor of greatest interest. If Multiple predictors in crop loss models include: levels of disease
evaluation of cultivars is the main concern, then C should be the intensity at several times; other epidemic characteristics such as
subplot. If disease effects are the main concern, then D should be time of epidemic onset and rate of increase; and disease levels in
the subplot. These same arguments can be used for other more combination with other crop characteristics. Models that utilize
complicated experimental designs. disease levels, or changes in disease levels at several times have been

called multiple-point models (16). Multiple-point models are
PREDICTORS OF CROP LOSS usually more accurate than critical-point models because of their

more thorough description of the epidemic. However, the number
Crop loss in its entirety is a function of disease, insects, weeds, of predictors may become too large and cumbersome to use,

other pests, and environment. For the limited purposes of this especially for survey situations. Only -7% of the surveyed crop loss
review, crop loss can be considered a function of the disease modeling papers considered multiple-point models alone; "20% of
epidemic plus an error term, where the error term accounts for the the papers considered multiple point and other epidemic or crop
unexplained variability. Disease-loss models use one or more characteristics.
epidemic characteristics to predict crop loss. In the statistical
jargon, these characteristics are called predictors, carriers, or PROCEDURES FOR MODELING CROP LOSS
independent variables, even though they are seldom independent
(34,35). Regression analysis. Of the many possible ways of representing

The graphical depiction of a typical epidemic, ie, a disease crop loss as a function of disease epidemics, linear regression is by
progress curve, is presented in Fig. 1, and shows several epidemic far the most popular. Regression analysis is a very powerful tool in
characteristics including the final level of disease (Xf), disease at situations in which a dependent variable (eg, yield and crop loss)
any given time (Xt), initial amount of disease (Xo), time of epidemic varies with an independent variable or variables in a systematic
onset (to), rate of increase (slope) at any time (r), and area under the fashion, and the scattering of observations around the curve
disease progress curve (ADPC). Models for crop loss can be follows a statistical relationship (35). The linear regression model
categorized as those using single or multiple independent variables, can be represented by:
Models with a single predictor, either disease intensity at a
particular time or the time at which a certain level of disease is Y =I '(B ZO+u (1)
reached, are called critical-point models (16,23). Zadoks and
Schein (45) pointed out the limitations of using these single
predictors. The greatest error lies in the assumption that all disease
progress curves reaching the same level at a particular time will Xf
cause the same crop loss. This assumption is seldom true.

TABLE I. Comparison of degress of freedom (df) for a randomized Xt --

complete block (RCB) and two versions of a split-plot design for an LWi
experiment with four replications (R), 10 cultivars (C), and five levels of to C.)
disease intensity (D) < ..

Designa

RCB Split-plotb Split-plotc

Factor df Factor df Factor df

R 3 R 3 R 3
C 9 C 9 D 4
D 4 Error (C) 27 Error (D) 12
C XD 36 D 4 C 9

C X D 36 C X D 36 X0 0  t tf
Error 147 Error 120 Error 135

Total 199 Total 199 Total 199 TIME
'D and C are considered fixed effects; interaction of R with whole plot (Actual or Physiological)
equals the whole plot error; other interactions with R are considered Fig. 1. Hypothetical disease progress curve depicting several curve
nonexistent. characteristics. Xo = initial amount of disease; Xf = final level of disease; Xt

hC as whole plot; D as subplot. = disease at time t; r= rate of disease increase; and ADPC= area under the
'D as whole plot; C as subplot, disease progress curve. See text for details.
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in which: Yi is the dependent variable for the i-th sampling unit (eg, inappropriate if a plot of residuals versus the predicted Ys follows a
plant, row, or plot); Zij is the j-th independent variable for the i-th nonrandom pattern (35). Nonconstant error variance and outliers
sampling unit; B/ is thej-th parameter, reflecting the weight given to can be determined with the same plot. Non-normality can be
Zij in constitution of 1'; p is the number of independent variables; evaluated with a plot of the residuals versus their "normal"
and ui is the i-th error term (unexplained variability). Examples of probability scores (11,35). Formal tests are available for all of these
Z are the epidemic characteristic discussed above. The single evaluations although often the graphical presentations are more
predictor form of equation 1 is: revealing.

The significance of the relationship between Yand the collection
Y = B0 + B17Z + ui (2) of Zs is evaluated with an F-test; individual B parameters can be

tested with t- or F-tests (35). The square root of the residual mean
in which Zil can represent: X(disease intensity) or a transformation square, the standard error about the line (S), can be used as a
of Xat a single time, ADPC, or time at which a certain Xis reached. measure of precision. Precision is inversely related to the standard
Models with the unknown parameters replaced by the estimates error. Since the size of S is a property of the units of Y, often a
from the data are presented without the i subscripts and error term, unitless measure of precision is needed. The coefficient of
and are called prediction equations. An example of a critical-point determination (R2), which ranges from 0 to 1, is a unitless measure
model is the equation derived by Gregory et al (7) for crop loss of of the proportion of explained variability, and is directly related to
corn (L = crop loss) in relation to the severity of southern corn leaf precision. Most disciplines have rules-of-thumb regardin•
blight at the dough stage (Xd): minimum acceptable values of R . In well-controlled lab studies, R

is expected to be above 0.95 or even 0.99. For crop loss studies, I
L = 0.69 Xd. (3) have found values above 0.80 to be excellent, and above 0.90 to be

unusual, especially when data from all replications are used in the
In this case, Bo = 0 and Bl = 0.69. For every 1% increase in X, loss analysis. With linear models, R 2 must increase or remain constant
increased by 0.69%. as additional variables are added to a model, even if the additional

The multiple predictor form of equation I can be written as: variables are not significant (35). The coefficient of determination
adjusted for degrees of freedom (Ra2), on the other hand, will

Yi = Bo + B1Zil +-"" -t--+ BpZip + u /i (4) decrease if nonsignificant variables are added to a model. Ra2 is,
therefore, an excellent metric for comparing linear models with a

in which the Zs represent levels of disease intensity, changes in different number of Zs. Some crop loss researchers use this measure
disease intensity, or other epidemic and/ or crop characteristics. An of precision (6). Ra2 need not be used when only one Z is being
example of this type of model is the equation of Burleigh et al (4) for considered.
loss (in percent) of wheat yield due to stem rust: Choosing which independent variables to use in a linear

regression model from a large set of possible variables is a complex
L = 5.38 + 5.53 X2 - 0.33 X5 + 0.50 X7 (5) problem with no unique solution. With the advent of high-speed

computers with large memories, many automated, stepwise
in which X 2, X 5, and X-7 are the levels of stem rust intensity (X) at procedures for variable selection were developed and are now
three growth stages of wheat (4). The use of a measure of disease commonly used. Most statistical packages have more than one
intensity with a crop characteristic is exemplified by the model of procedure for variable selection (5,10). I have found it rare for any
Scott and Hollins (38) for crop loss (L) of wheat: two of these stepwise procedures to result in the same subset of

independent variables. In the last few years, interactive computing
L = -0.19 + 0.41 Z2 + 0.17 Z7 (6) systems have become more common, and so have interactive

statistical programs for choosing independent variables for a
in which: Z2 is a lodging index and Z, equals the percent of shoots regression model (11,37). These techniques permit a fuller appraisal
with severe eyespot disease. of the data and can result in a better final subset of variables, but

With many diseases that are measured as incidence only they do require more knowledge of statistics than earlier automated
(proportion of plants infected), regression analysis provides a methods. However, blind acceptance of results of automated
useful mechanism for estimating the yield per infected and healthy programs without statistical advice is a very dangerous practice.
plant. The following model can be used when, as is usually the case, When the predictors, eg, levels of disease intensity at several
it is more convenient to harvest entire plots (rows) rather than times during an epidemic, are highly correlated with each other,
individual plants. The model for yield per plot (Y) can be written as: estimated parameters will have large variances and may appear to

be nonsignificant. Estimated parameters could even have signs
Yi B1Zi7 + B2Zi2 + ui (7) opposite of that expected on theoretical grounds. Two solutions to

this problem are the use of ridge regression and principal
in which: Z, is the number of infected plants per plot; Z2 is the components regression. Ridge regression became popular in the
number of healthy (disease-free) plants per plot; BI and B2 equal the 1970s as a means of reducing the variance of estimated parameters
yield per infected and healthy plant, respectively. Because there can by producing (slightly) biased parameters (32). A few programs are
be no yield when there are no plants, Bo equals zero. Once the available for this type of analysis; we are using a Macro in the
parameters are estimated, they can be compared with a t-test (35) to MINITAB system (37) for this purpose. I find ridge regression to be
determine if there is a difference in yield between infected and very subjective and do not recommend it to anyone who does not
healthy plants. Compensation of plants for each other can be tested have a strong background in applied statistics. Principal
by estimating the parameter for the interaction of Z, and Z2 (ie, B12) components regression will be discussed in the multivariate
and testing whether B1 2 is significantly different from zero. If B12 is statistics section below.
not different from zero, the data do not support the hypothesis of Nonlinear regression. Madden et al (28,29) used a nonlinear
compensation. We are using this approach to determine crop losses regression model to relate crop loss to disease intensity. Nonlinear
of maize due to strains of MDMV. models cannot be written in the form of equation I. Instead, with

Regression model evaluation. To properly evaluate or verify a most nonlinear models the parameters appear as exponents or are
model, one should be aware of the statistical assumptions inherent multiplied or divided by other parameters. The model of Madden et
in the procedure used to develop the model. The us are assumed to al (28), a form of the Weibull cumulative distribution, can be
be normally and independently distributed at each level of Z with written as:
mean zero and constant variance o2 (35). The us are estimated by
the residuals (observed minus predicted Ys), which can be Li= - exp(-((X - d)/b)y) + ui (8)
evaluated graphically, and also with formal tests (11,35). The
residuals are the keys to model evaluation; a model may be in which: Xi is disease intensity at one time, Li is crop loss
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(represented as a proportion), and d, b, and s are parameters. (For mechanism for testing hypotheses about such effects. For instance,
interpretations of these parameters, see [28].) Another useful Hampton (8) used path analysis to assess the yield components of
nonlinear model, which was suggested by Seinhorst (39), is beans that were infected by bean yellow mosaic virus and bean
presented here as a prediction equation (ie, no u or i subscripts) common mosaic virus. He hypothesized that these viruses reduce
with different symbols: the number of pods per plant, which, in turn, affects the number of

seeds per pod and the seed weight, and also that the number of seeds
y = m + (l-m)N•z-) (9) per pod influences the seed weight. He was able to use path analysis

to test these hypotheses and compare infected with healthy beans.
in which: y is relative yield (proportion), Z is the population density Multivariate statistics. For analysis of systems with many
of nematodes, and N, m, and t are parameters. Nis the nematode correlated variables (predictors or dependent variables)
damage potential, t is the tolerance below which no crop loss multivariate statistics are often useful. Although multivariate
occurs, and m is the minimum relative yield at the highest statistics, by definition, are concerned with multiple dimensions
population density of nematodes. (9,33), there is not always a clear-cut separation of these techniques

Estimating parameters of nonlinear models is computationally from univariate ones. Multiple regression and correlation analysis
complex and may not even work. Large data sets are usually often are grouped with univariate techniques even though they deal
required and good initial "estimates" of the parameters are with multiple variables. Multivariate statistics is a vast and
necessary (26). If the estimated parameters are highly correlated complicated field of study and no adequate summary can be
(>0.95), they may compensate for each other and, therefore, the presented here. Only potential uses of these techniques for crop loss
estimates may not correspond to the optimal solution. I believe that research will be discussed.
nonlinear models should be used only when there are good Principal components and factor analysis are two methods for
theoretical reasons for doing so. reducing the dimensionality of a data set by finding linear

Path analysis. Path analysis uses regression techniques, but is combinations of the original variables (27,33). Since most
based on more refined assumptions and allows more refined variability can be explained with fewer, independent components
interpretation than the methods described above. Although used (or factors) than the original data, effective dimension reduction is
successfully in research in sociology and psychology, path analysis accomplished. The new components are independent of each other
has rarely been used in phytopathology. It is a statistical technique because of mathematical requirements, and therefore interpretations
for assessing the causal order among variables in a system closed to often are improved (9,27,33). Formal statistical tests seldom are
outside influences (44). In other words, assuming cause-effect performed with principal components or factor analysis.
responses, one uses this analysis to test assumptions of direct and Although principal component analysis is a useful technique in
indirect effects of variables. Conceptually, a path analysis is its own right, it is often used as an initial step to another form of
presented as a path diagram with the assumed causal order analysis. For instance, estimated regression parameters are very
represented by the direction of arrows. As an example, consider the imprecise when the predictors are highly correlated. A solution to
regression model of Scott and Hollins (equation 6) (38). Their this problem, other than ridge regression, is to produce "new"
equation does not 'show explicitly the direct and indirect causes of independent variables consisting of the principal components
crop loss. One possible relationship among these three variables is which account for most of the variability among the predictors. The
presented in Fig. 2. In keeping with path analysis practices, multiple regression model can be written as:
equation 6 is presented in Fig. 2 with all variables expressed as Zs.
Eyespot may directly affect loss, or the disease may affect lodging Y = Y fj(Bj Ci) + ui (10)
which, in turn, may affect loss. Lodging from other causes would
also affect loss. Standardized coefficients (parameters) from in which all terms are defined as before and Cij is the j-th (out of p)

ordinary, least-squares regression are used to estimate the path principal component for the i-th sampling unit (31). Interpretation
coefficients (rs), which show the degree of direct and indirect of the parameter Bj is based on which variables are heavily loaded
effects. In Fig. 2, the es are called latent variables and are analogous in the j-th principal component. Wiese (43) used this approach to
to the us of regression. Scott and Hollins (38), unfortunately, did relate yield of peas to several crop and environmental variables.
not give all the regression information necessary to calculate the The technique can be performed by several statistical computing
path coefficients. This is not intended as criticism of their work; the packages, including BMDP (5).
example was chosen only to suggest a useful statistical technique. Canonical correlation is a multivariate statistical technique for

Plant pathogens probably cause numerous direct and indirect determining the relationship between two sets of variables. In a

effects on losses of many crops. Path analysis is a formal sense, it is a generalization of regression and correlation analysis. A
function(s) of one set of variables (eg, Ys) is related to a function(s)
of another set of variables (eg, Zs). For example, one set of
variables could be yield components of wheat (tillers per unit,

3 -0.19 + 0.41 Z2+ 17 Z1  kernels per head, weight per kernel) and the other set could be levels
of leaf rust at different times and/ or environmental variables.
Canonical correlation determines the association between the twoTa ,sets of variables by defining separate linear combinations of the two
sets, and then associating the linear combinations with correlation
coefficients (33). Stynes (40) used this technique to relate root

EYESPOT LODGING pathogens of wheat to soil properties.
((2) If the Zs are replaced by indicator codes for treatment levels,

• rl• /canonical correlation reduces to multivariate analysis of variance

(MANOVA) (9). MANOVA can also be looked upon as a
generalization of ANOVA in which univariate variables are

r2, replaced by sets (vectors) of variables. This allows an analysis of

e yield components, for example, at levels of inoculation, chemicals,
3 etc. Most plant pathologists analyze each variable separately.

LOSS However, yield components are correlated with each other (6), and
(3L this reduces the efficiency of ANOVA. Unfortunately, MANOVA

does not provide convenient mechanisms for testing differences

Fig. 2. Path diagram depicting the effect of eyespot (Pseudocercosporella among the treatment means. MANOVA also may be difficult or
herpotrichoides) and lodging on loss of wheat. Derived from Scott and impossible with some complicated experimental designs. I find that
Hollins (38). a satisfactory compromise is to first perform a MANOVA, where
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appropriate, and if certain factors or their interactions are the validation data should be "hidden" so that they have no
significant, then to use ANOVA and contrasts of the means for influence on the model builder (34). Crop loss researchers seldom
each variable separately. perform double-cross validation. When validation studies are

Most crop loss researchers have been reluctant to use attempted, parameter estimates and the functional form of the
multivariate statistics because of the rigor of matrix notation and model(s) often vary (6,29).
algebra that it involves. Plant pathologists need not become Theoretical considerations. Very few of the models for crop loss
proficient in multivariate or other branches of statistics, but should due to diseases at the field level consider the physiology of yield
develop good working relationships with applied statisticians who reduction (I), probably because most crop loss researchers are not
can help design and analyze experiments. These statisticians strongly oriented toward physiology. Physiological models can be
should be considered full-fledged members of a research team. very complex and require more inputs than are practical in field

Model validation. Once a model is chosen to represent crop loss, situations. A complete understanding of the process of crop loss
the overriding question is: How valid is the model, or how well does will not be possible, however, without considering the
it actually behave in use (34)? Testing a model on the data used to physiological response of crops to disease (3).
develop it (ie, verification) will almost certainly overestimate the Tammes (41) suggested a theoretical relationship between yield
model's performance, because the procedure used to develop the and the levels of an injurious agent, such as a plant disease. Fig. 3 is
model makes greatest use of all idiosyncrasies of those particular redrawn from his original article. The relationship is loosely based
data (34). On the average, the apparent precision (as possibly on physiological considerations. Properties of this relationship
measured by R 2 or S) will be greater than the true precision of the under a given cropping regime include an upper limit of yield (=
model for the whole population of values, attainable yield), a lower limit of yield for which an increase in

Ideally, the validity of a model should always be assessed. disease does not cause a further reduction in yield, a threshold level
Mosteller and Tukey (34) described two levels of validation: simple of disease below which there is no measurable change in yield, and
cross-validation, and double cross-validation. Simple cross- the middle part of the curve where there is a significant correlation
validation tests the model with data different from those used to between yield and disease. Although some of the models account
estimate the parameters and choose the model form. Sometimes, if for these theoretical limits (eg, equations 8 and 9), most models deal
enough observations are available, half or a smaller subset of the only with the middle (shaded) portion of Fig. 3 and assume no
data can be omitted from the initial analysis, and the resulting limits to upper and lower yield. Incorporation of the theoretical
model can be used to predict the omitted values. An R2 can then be considerations of Tammes (41) into methods of disease loss
calculated for the fit of the model to these omitted data. An estimation entails conducting thorough field studies to obtain
expansion of this approach, often called the "jack-knife" several levels of disease intensity, and also increased modeling
procedure, is to set aside one observation, estimate the model research. Nevertheless, these considerations are necessary for a
parameters and test the prediction of the omitted point, return this fuller understanding of crop loss.
omitted point to the data set, remove the next value, and continue
as before. An R2 can be calculated based on the predictions of the DISCUSSION AND CONCLUSIONS
missing values. Note that every prediction is for an observation not Plant pathologists are only beginning to understand the complex
included in the analysis that serves as a basis for the prediction. relationship between plant diseases and crop losses. During the
Crop loss data sets are seldom large enough for elimination of a past decade, crop loss research has progressed from the obscure
substantial fraction of the points for validation purposes. Thus, concern of a few scientists to a major speciality within plant
"jack-knifing" is an excellent approach for validating crop loss pathology. The American Phytopathological Society now has a
models, especially with today's high-speed computers. disease loss committee and PHYTOPATHOLOGY has a section on

A higher level of validation, double cross-validation, involves Disease Detection and Losses. Horsfall and Cowling (15) and
testing a model with data collected separately from those used in James and Teng (23) have given excellent historical accounts of the
developing the model (34). Ideally, these data should be collected determination of losses due to plant diseases in field plots. James
after the model parameters were estimated. If this is not possible, (16-22) has made especially important contributions to the science

of crop loss assessment. In an elegant and pioneering series of
papers in the 1970s, James and co-workers (16-22) showed that
crop loss assessment and modeling are, indeed, of scientific merit.

Methods for measuring and quantifying disease intensity in
single plants and fields (23,24,42) and for determining and
predicting crop losses are improving. Nevertheless, there still are
few cases in which loss or yield can be described with the precision
and repeatability necessary to make predictions on a large scale
basis. Furthermore, few models have been developed for losses
caused by more than one disease, or by diseases in combination

Q with other pests. Until reliable predictive capabilities are achieved
._1 and multiple diseases are considered, plant pathologists will be
L.i unable to make much of a contribution to the estimation of yields

on a worldwide basis (12).
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