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EDITOR'S NOTE: This Letter to the Editor should be read in conjunction with Drury et al (3).

Drury et al (3) present two major points in their letter to the
editor: the numerous assumptions on which the rhizosphere (and
spermosphere) width calculations are based result in uncertainty
about the accuracy of the calculated values; and decisions as to
whether a rhizoplane or rhizosphere effect is operating should be
based on a specific type of regression analysis of inoculum density
(ID)-infection data proposed by Baker and co-workers (1,2), rather
than on rhizosphere width calculations such as  have proposed (4).
Each of these two points is based on a number of different
assumptions and lines of reasoning. In this response, I will address
points raised by Druryet al (3). Additionally, | willattempt to show
that our disagreement is based on differences in fundamental
assumptions about representation of the physical configuration of
soil-root-pathogen systems, and that a critical evaluation of these
assumptions and their implications indicates that my point of view
is the more realistic one.

THE ACCURACY OF RHIZOSPHERE
WIDTH CALCULATIONS

All models simplify reality. Consequently, all models are
inaccurate to some extent. A decision as to whether the inaccuracy
of a particular model is tolerable must be based on its intended
purpose. The equations for the calculation of rhizosphere and
spermosphere widths were envisioned as being used in two types of
investigations: determination of whether the distance from a plant
part to a propagule that can infect it is related to any other factor
(such as propagule size, control measures, type of pathogen, etc),
and determination of whether discrimination of rhizosphere and
rhizoplane effects on the basis of the regression models proposed by
Baker and co-workers (1,2) is valid in all situations (4,5). For the
first type of investigation, the tolerable degree of accuracy is
unknown at present. However, for the second type of investigation,
both the direction and magnitude of tolerable inaccuracy can be
known. In order to use the rhizosphere width calculation to show
that a rhizoplane effect is not operating in a particular situation (ie,
to show that propagules must be initiating infections from beyond
what can be reasonably considered to be the rhizoplane), it is more
important that rhizosphere size not be overestimated than that it
not be underestimated. If the “true” rhizosphere is larger than a
calculated value which indicates a rhizosphere effect (ie,
rhizosphere width has been underestimated), it is still definitely a
rhizosphere. If the “true” rhizosphere is smaller than the calculated
value, then a rhizoplane effect may be present, and thus an
incorrect decision could be made. Thus, the rhizosphere width
calculation may be used to show that a rhizoplane effect does not
exist as long as a minimum width can be calculated with some
degree of certainty. The tolerable amount of overestimation can be
considered to be that which allows reasonable certainty that it is not
only propagules that actually touch the root that initiate infections.
If a rhizoplane effect is considered to exist when the calculated
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rhizosphere width is less than the radius of a pathogen propagule
(ie, a propagule must touch the root in order to initiate an
infection), then certainty of the existence of a rhizosphere effect can
be based on the certainty of the accuracy of the values used in the
calculation of rhizosphere width (ie, /D, infections, and the
physical dimensions of the plant part concerned). If reasonable
variation in the independent variables could not result in the
calculation of a rhizoplane effect, then a rhizosphere effect can be
assumed. So, a discussion of the tolerable accuracy of rhizosphere
and spermosphere width calculations must center on whether or
nota reasonably accurate minimum width can be calculated, not on
the absolute accuracy of the calculations,

Druryetal (3) discuss several factors that reduce the accuracy of
rhizosphere width calculations. Most of their points are valid. In
particular, the term “propagule efficiency” appears to be more
suited to the model than does the term “propagule competence,”
and should replace it. However, it is important to note that all but
one of the factors which they discuss (as well as other factors
discussed in the paper in which the rhizosphere width equations
were presented [4]) result in an underestimation, not
overestimation, of rhizosphere width. The one factor for which
inaccuracy of estimation can be expected to. sometimes result in
overestimation of rhizosphere width is the /D of the pathogen. If
pathogen 7D is underestimated, the rhizosphere width will be
overestimated. Thus, the question of whether a minimum
rhizosphere width can be calculated is a question of whether the
maximum probable /D of the pathogen used can be estimated.
Drury et al (3) correctly point out that population assays based on
the use of selective media may greatly underestimate natural
populations of some propagules of some pathogens (such as
oospores of Phytophthora spp.). However, for some other
pathogens, recovery of 80-100% of the propagules added to
nontreated soil has been reported (10,11). If propagules are
counted visually, added to soil at specific /Ds, and the population
added is used in a rhizosphere width calculation, the rhizosphere
width will be overestimated only if the pathogen population
increases in the absence of the host. Such population increases may
occur in soils treated by some methods, such as autoclaving.
However, if nontreated soil or soil treated with a relatively mild
method is used, and if assays performed after infestation do not
indicate a population increase, then the /D at which the soil was
infested should be able to be used for rhizosphere size calculations
with reasonable certainty that /D has not been underestimated,

In summary, the value that can be calculated by using the
rhizosphere width equation is not very accurate; however, it is
accurate enough for its intended purpose of allowing decisions to
be made about whether or not a rhizoplane effect exists in a
particular situation.

VOLUME AND SURFACE PHENOMENA

Drury et al (3) correctly point out that the rhizosphere and
spermosphere width equations are based on an assumption that the
relationship between infection and /D is a volume phenomenon—
ie, itisassumed thata rhizoplane is merely a very small rhizosphere,
not a qualitatively different phenomenon. They suggest that the
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rhizosphere size equations should be used only if it has been
established by the method of Baker and co-workers (1,2) that a
rhizosphere effect exists. The interaction of their argument with the
intended use of the rhizosphere width equation for differentiation
of rhizosphere and rhizoplane effects produces two mutually-
exclusive hypotheses: A) the theory of Baker and co-workers is
valid, and calculations of rhizosphere width cannot be used to
differentiate rhizosphere and rhizoplane effects; and B) the theory
of Baker and co-workers is not valid. In order to show that
hypothesis B is the correct alternative, it will be shown that the
rhizoplane model of Baker and co-workers predicts results which
are untenable when applied to ID-infection relationships for
soilborne plant pathogens, and that these predictions result from a
misrepresentation of volume-surface phenomena.

The interaction of suggested models of ID-infection
relationships with the rhizosphere and spermosphere width
equations was examined in the paper in which the rhizosphere
width equations were presented (4). This was done because /D-
infection data is used for calculation of rhizosphere width.
Furthermore, since calculated rhizosphere width depends on the
ratio of infections to /D, it was suggested that if the number of
infections per unit of inoculum varies with /D (ie, a nonlinear
relationship exists), then the most accurate estimate of rhizosphere
size should be obtained by fitting a regression equation tied to the
origin to /D-infection data, and then calculating rhizosphere width
on the basis of the ratio of infections to /D predicted by the fitted
equationat very low /Ds (ie, as /D approaches zero). When this was
done for a quadratic equation tied to the origin (y =k /D + k21D")
or the limiting site equation (y = N(1 — e™?) proposed by
Vanderplank (13), a finite value of rhizosphere width was
calculated. However, when an equation of the form proposed by
Baker and co-workers (v = k/D") was used, unrealistic values for
rhizosphere width were produced. If b was greater than I,
calculated rhizosphere width was 0 as /D approached 0. If b was
less than 1, calculated rhizosphere width was infinity as ID
approached zero. Only if b = | was a finite rhizosphere width
calculated. Thus, if »=2/3 (in which case a rhizoplane effect would
be predicted according to the theory of Baker and co-workers
[1,2]), the calculated rhizosphere width would be infinity. It was
noted that the existence of this paradox makes the use of equations
of the form proposed by Baker and co-workers (1,2) inappropriate
for use in the calculation of rhizosphere width, and that the
paradox may indicate that calculation of rhizosphere width for a
rhizoplane situation is inherently impossible, and/ or that either the
rhizosphere width model or the model of Baker and co-workers
(1,2) is invalid. Thus, the incompatibility of the rhizosphere width
model and the theory of Baker and co-workers (1,2) has been noted
by both Drury et al (3) and the author. To decide which of these
alternatives is correct, it is necessary to examine the implications
and assumptions of the theory of Baker and co-workers (1,2).

The theory of Baker and co-workers (1,2) distinguishes two
distinet situations: rhizosphere effect and rhizoplane effect. The
concept of the rhizosphere effect is widely accepted (7,8,13), and as

TABLE 1. Seed infections as a function of inoculum density as predicted for
a hypothetical experimental system in which a spermoplane effect is in
operation

Inoculum density Successful

(propagules per infections Infections
em' of soil) per seed” per propagule”
0.0001 0.0022 22.0
0.001 0.01 10.0
0.01 0.0464 4.64
0.1 0.215 2:15
1.0 1.0 1.0
10.0 4.64 0.46

“Calculated using the equation § = kJD* ', in which § = successful
infections per seed, /D = inoculum density. and & = surface arca per seed
(1 em’).

"Ratio of successful infections per seed to average number of propagules per
seed in a system where each seed is surrounded by | em’ of infested soil.
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is shown below, it is compatible with the /D-infection theory
developed by Vanderplank (13). In contrast, the concept of a
qualitatively different rhizoplane effect has been criticized by a
number of authors (7,8,13), and it is the source of the
incompatibility of the theory of Baker and co-workers (1,2) and the
rhizosphere and spermosphere size equations. For a rhizoplane
effect, Baker and co-workers (1,2) proposed that

S§=kiID*? (n

in which § = number of successful infections, and k£ = a constant.
Drury et al (3) refer to & as the “apparent surface area of the
phenomenon.” However, an examination of the tetrahedron space
model used by Baker and co-workers (1,2) in the development of
the theory indicates that it would be more proper to say that “k is
proportional to surface area.” If the tetrahedron space model, as
corrected by McCoy and Powelson (9), is used to develop the
equation, k is equal to a constant (0.9164) multiplied by surface
area. In either case, kK may be accepted as being either equal to, or
close to and proportional to surface area. If equation 1 is a valid
representation of the relationship between number of infections
and /D, then it should be possible to use it to predict the number of
infections which should result at specific /Ds for a plant part of
surface area = k. In particular, the equation can be used to predict
numbers of infections in hypothetical experimental systems such as
the following one.

A single perfectly spherical seed of surface area = 1 em’ is placed
inthe exact center of a ?erfeclly spherical container which will hold
just the seed plus 1 cm” of soil. Thus, the radius of the seed will be
0.282 cm, the distance from the center of the seed to the edge of the
container will be 0.639 ¢cm, and the distance from the surface of the
seed to the edge of the container will be 0.357 cm. A large number of
these experimental units is constructed. Pathogen propagules are
mixed randomly (or regularly) into the soil at specific /Ds. It is
assumed that /D and infection can be measured perfectly, that
every propagule which “touches the seed™ initiates an infection,
that all seeds are identical in size and susceptibility, and that a
spermoplane effect as defined by Baker and co-workers is present.
According to the theory of Baker and co-workers (1,2), the number
of infections may be calculated asa function of /D by equation 1. In
Table 1, the predicted number of infections per seed for specific /Ds
and the ratio of infections to propagules are presented.
Examination of the number of predicted infections per propagule
indicates that for /Ds less than one propagule per cubic centimeter
of soil, more than one infection per propagule is predicted. For
example, if the experiment were repeated a number of times with
100 experiment units and 0.01 propagules per cubic centimeter of
soil in each performance, it would be predicted that there would be
an average total of one propagule in the 100 experimental units,
and 4.64 infections in those same 100 experimental units. This
implies that a single propagule can initiate more than one infection,
even though a propagule must touch a seed in order to initiate an
infection (and thus one propagule can touch only one
seed)—obviously an impossibility.

Rather than accept that hypothetical results such as those above
indicate a deficiency in the theory of Baker and co-workers (1.2),
Drury et al (3) propose that there is a minimum relevant distance
for any particular /D, and correspondingly, a minimum relevant
1D for any particular system size. They propose that the minimum
relevant distance is equal to /D'?, and correspondingly, the
minimum relevant /D for a particular distance is equal to the
reciprocal of the distance cubed. For the hypothetical system
described above, the minimum relevant /D would be the reciprocal
of the distance from the seed surface to the edge of the container
cubed: (0.357)"* = 22 propagules per cubic centimeter of soil. Thus,
they would consider the entire example above to be irrelevant. This
viewpoint might be accepted if the minimum relevant distance
concept were a widely accepted attribute of similar systems;
however, no appropriate references to the development of this
concept are cited by Drury et al (3), and in fact, the concept is
irreconcilable with established statistical theory. The proper
treatment of systems in which a random distribution of objects or



points is overlaid by bracketing measures is applicable to any
number of dimensions (eg, lines, planes, and volumes), and can be
illustrated simply for one dimension as follows.

Assume a line of indeterminate length. On this line we randomly
distribute points at some mean density ¢ (units = number per unit
length). Bracketing distances of a certain length / are now
superimposed on the line in either a random or regular manner.
This system is a Poisson process (12). The probability that a single
bracketing distance will contain no points is e . Correspondingly,
the probability that a bracketing distance will contain one or more
pointsis | —e . These probabilities (as well as the probability that
a bracketing distance will containany particular number of points)
can be calculated forany finite positive values of dand /. No matter
what the values of 4 and /, there will always be some probability (0
< P< 1) that a bracketing distance will (and similarly, will not)
contain points. There is no minimum distance, and similarly, there
is no minimum /D which must be used to test the theory of Baker
and co-workers (1,2).

The question may now be asked: if the rhizoplane model of Baker
and co-workers is not valid, how is it that it was derived from the
apparently valid concept of propagules being represented by points
in space? The answer is not that the points in space concept is
invalid (the valid rhizosphere concept was also developed from it),
but that the manner in which a plane (representing the root surface)
is superimposed on the point space is inappropriate. The
rhizoplane model starts with a volume in which points are regularly
distributed, and for which the distance between points can be
calculated (1,2). A plane is then superimposed onto the point space
in such a manner that the plane exactly lines up with a layer of
points. Since the distance between points is the same in the point
space and on the plane, the density of points on the plane can be
related to the density of points in the space (volume) by means of
the distance between points. This procedure gives rise to the
rhizoplane equation (equation I). The problem with this procedure
is that it ignores the fact that as the density of points in space is
increased, not only does the density of points on the layer
intersected by the plane increase, but also, the density of the layers
of points increases—ie, the layers become closer together. As long
as propagules are considered to be points, this third dimension
cannot be incorporated into the model, since the probability that a
plane (with no height) will intersect a point (with no finite
dimensions at all) is zero. However, if the propagules are assumed
to have some finite volume, then it can be shown that the
probability that a plane inserted into a point space parallel to the
layers of points will intersect a layer is proportional to the one-third
power of the density of the points in space (ie, P=kID'?, where P=
probability, /D = point density, and k = a constant which
incorporates point size). Combining the probability thata layer will
be intersected with the equation for the density of points per layer
(ie, the rhizoplane equation) gives:

S=kiIDY*}kID"? = k3 ID.

This is the same form as the rhizosphere equation. Thus, the value
of § that can be calculated using equation | is not predicted
successful infections, but rather, an abstract entity with no
correspondence to a measurable property of soil-plant-pathogen
systems. Regardless of whether a rhizosphere or rhizoplane effect is
operating, the basic form of the /D-infection equation is

§=VID

in which ¥ = rhizosphere volume. This equation describes a
straight line regardless of the values of ¥ and ID.

RHIZOSPHERE SIZE AND LIMITING SITES

Druryetal (3)attempt to reconcile the rhizoplane effect equation
of Baker and co-workers (1,2) with the Poisson one-hit equation
proposed by Vanderplank (13) by proposing a combined equation
(equation 9 in their paper [3]). However, because the combined
equation incorporates the rhizoplane equation of Baker et al (1,2),
it shares the deficiencies of that equation, and should be rejected.
Although Vanderplank’s equation does not explicitly incorporate
rhizosphere size, an examination of its derivation for soilborne

pathogens can be used to show that rhizosphere size can be derived
from it.

Vanderplank’s equation described a Poisson process. For a
soilborne pathogen, it may be considered to describe a situation in
which propagules are distributed randomly in soil at some /D, and
potential infection sites, each with a volume of soil V, associated
with it (the “sitesphere”), are superimposed on this distribution of
propagules in soil. It is assumed that any propagule within a
sitesphere initiates an infection. The expected proportion of sites
that do not contain spores is ¢ /**s. Thus, the expected proportion
that contain spores is 1 — ¢ /?"s. For a specific number of sites per
unit (seed, root segment, etc) N, the expected number of infections
per unit ¥ would be

Y= N(l — e %), (2)

This is essentially the same equation as that proposed by
Vanderplank (13), except that he designated V, as a— a site
susceptibility parameter. Regression analysis of /D-infection data
using equation 2 (after multiple infection transformation [6]) can
be used to estimate N'= sites per unit, ¥, = sitesphere volume, and
NV, = rhizosphere or spermosphere volume per unit. The value of
NV, can be used to estimate rhizosphere or spermosphere width
using the appropriate equations (4). Alternatively, a quadratic
equation tied to the origin (v = k1/D + k2/D%) can be used in the
estimation of rhizosphere volume and width (4.5), and either a
quadratic equation tied to the origin or the general equation
proposed by Baker and co-workers (y = k/D") can be used to
determine whether limiting sites are present (5).

Although it must be recognized that the values calculated by
using the above procedures are estimates, and are subject to the
limitations discussed above, they still may be of use in evaluating
the activities of soilborne pathogens. If sites are found to be limiting
in a particular situation, then reasonable objectives of further
research might be to ascertain the nature of the sites and to develop
methods for the modification of site number and susceptibility.
Additionally, comparison of calculated values of N and
rhizosphere width for different pathogens may be of use in
developing concepts of pathogen behavior; and an understanding
of ID relationships is a prerequisite for the development of models
which incorporate the effects of other factors on disease (eg,
simulation and multiple regression models).
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