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ABSTRACT

Fleming, R. A. 1983. Development of a simple mechanistic model of cereal rust progress. Phytopathology 73: 308-312.

A mechanistic mathematical model of plant disease progress, based on described by the Gompertz equation than by the conventionally used

cereal rust biology, is derived. The model provides an explanation for R. D. logistic equation.

Berger's finding that disease progress data were consistently better

Additional key words: compound interest disease, polycyclic disease, uredial infection cycle.

Disease progress models have traditionally been used in plant susceptible host tissue that is visibly diseased), and D is the rate of

disease epidemiology to describe the dynamics of plant disease uredospore removal from the dispersal cloud through death or

increase in time. Unfortunately, as Kranz (13) observes, these deposition. Initially i is assumed to be constant, and throughout,

models are essentially input-output relations that provide little the term "host tissue" excludes all tissue of the host plant that is

understanding of the underlying biological mechanisms. Hence, it effectively immune to infection.

is not surprising that when one such disease progress curve is shown This equation is supported by empirical evidence. The term Bix

to be more effective than another, a biological rationale is rarely reflected Kochman and Brown's (12) observation of a linear

provided. Our understanding of plant disease epidemics and our relationship between uredospore production and infectious area

ability to successfully contain them probably suffer in the absence for oat crown rust and oat stem rust. The term Du is consistent with

of such explanations. studies on uredospore longevity (19,27) and with the observation
that uredospore losses to the infection of host tissue are negligible

THE MECHANISTIC MODEL compared to the number of airborne uredospores (22).

The development of rust disease on cultivated cereals occurs The characteristic time scale of this equation is l/D, the average

mainly during the repeating uredial stage of the pathogen's life time between uredospore liberation and death or deposition. This is

cycle when uredospores are produced in prodigious quantities and likely a matter of minutes or less, certainly faster than the dynamics

carried by air currents from one cereal plant to another. The model of infectious tissue, which operate at a time scale on the order of at

developed below represents an attempt to characterize least 2 days (generally the logarithmic infection rate •<0.5 per day

mathematically the mechanics of the uredial infection cycle of the for cereal rusts [24]). Thus changes in the number of viable

cereal rusts. Beginning with the production of uredospores by airborne uredospores, u, occur so much faster than changes in the

sporulating pustules, mathematical descriptions of the dynamics amount of infectious tissue, ix, that u remains close to its steady

are offered for uredospore-vulnerable host tissue contact, state value (the value of u at which du/dt = 0) with respect to the

establishment of latent infections, and subsequent development of amount of infectious tissue. Hence,

latent infections into visible symptoms of disease. These
mathematical descriptions of the infection cycle stages are u= Bix/D. (1)

ultimately combined into a single disease progress equation. The
model, which ignores meteorological influences and supposes no
host growth, is developed by focusing on the basic biological Table 1 provides a summary of variable definitions.

processes underlying disease spread. Contact. Next I try to express the dynamics of uredospore-
Uredospore dynamics. I begin by concentrating on the cloud of vulnerable host tissue contact in a mathematical form. This

dispersing uredospores. Let u be the mean daily number of viable requires a precise definition of vulnerable host tissue. A fully

airborne uredospores over a unit area of cultivated cereal plants. developed uredium occupies a certain amount of host surface area.

Then, adapting the approach of Fleming (6), the rate of change in u When multiple infections occur within a day or two within such an

with time, t, can be written area, only one uredium results. Hence, upon establishment, any
infection effectively preempts the area it will eventually occupy

du/dt = Bix - Du, (18). Vulnerable host tissue includes all healthy host tissue that has
not been preempted.

where B is the rate of uredospore release into the dispersal cloud per The process of infection of vulnerable host tissue begins with the

unit amount of infectious tissue, i is the fraction of visibly diseased deposition of a uredospore. To examine the infection dynamics,
tissue that is infectious, x is the disease severity (the fraction of consider the proportion of host tissue, y, that experiences initial

contact with a uredospore. If C is the per-uredospore rate of
successful contact (measured in terms of the size of the "target," the

The publication costs of this article were defrayed in part by page charge payment. This vulnerable fraction of host tissue), then the rate of change in y can
article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. § be approximated as
1734 solely to indicate this fact.

01983 The American Phytopathological Society dy/dt = Cvu - Ey. (2)
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Here v is the fraction of host tissue that is vulnerable (ie, capable of Synergistic or competitive interactions between uredia have little
supporting a new uredium), and E is the rate at which successful influence on this rate (16,23).
uredospore contacts with vulnerable host tissue develop into More precisely, L/p slightly overestimates the average rate, at
established (latent) infections. The term Cvu is proportional to the least early in the epidemic while L is increasing and therefore
rate at which successful initial contacts occur; the term Ey is presumably dominated by younger age classes. On the other hand,
proportional to the rate at which these initial contacts develop into the average rate ignores the disproportionately greater
latent infections. It is implicitly, and not unreasonably (9,26) contribution to disease progress by the earliest infections to begin
assumed here that uredospore dispersal can be adequately sporulating. Nonetheless, in total, equation 4 seems reasonable
described by the Poisson distribution (ie, that successful contacts given the earlier omissions and approximations of this
are distributed independently and randomly among potential sites mathematical development and the goal of arriving at a simple
of successful contact). disease progress model.

Equation 2 has a characteristic time scale of l/E, the average time Substituting equations 1 and 3 into equation 4,
between successful initial contact and the subsequent establishment
of the corresponding latent infection. This is typically on the order dL/dt = avx - L/p (5)
of a few hours (28). In contrast, according to equation 1, changes in
the number of viable airborne uredospores, u, are assumed to occur where a = BCi/ D. A biological meaning emerges for a when
concurrently with changes in infectious tissue. As discussed above, equation 1 is substituted into this relation, giving a = Cu/x. In
the characteristic time scale of infectious tissue dynamics is on the words, a is the mean rate of successful contact (ie, the mean
order of at least 2 days. Changes in the vulnerable proportion of infection rate) (measured with respect to the proportions of host
host tissue, v, are even slower (until late in the epidemic). Hence, tissue that are vulnerable and visibly diseased).
changes in y generally occur considerably faster than changes in u Disease severity. Because neither the vulnerable, v, nor the
or v, and because of this, y is expected to remain close to its steady latently infected, L, proportions of host tissue are directly
state value with respect to u and v: observable variables, equation 5 is not immediately useful in its

present form. To alleviate this problem, we can write v and L in
y = Cvu/E. (3) terms of the observable variable, disease severity:

Latent infections. By definition, the proportion of host tissue v = H (1 - x),
that is latently infected, L, is related to the proportions that are and
vulnerable, v, and visibly diseased, x, by the expression L = (I - H) (I - x) (6)

L = 1 - v - x. where H, a function of x, is the vulnerable (ie, uninfected and not
preempted) proportion of symptomless host tissue.

Since Ey is the relative rate at which host tissue becomes latently Substituting for v in equation 5,
infected, the latently infected proportion, L, changes at an
approximate rate of dL/dt = aHx (1 - x) - L/p. (7)

dL/dt = Ey - L/p, (4) Next, assuming that the proportion of latently infected host tissue,
L, remains near its steady state value with respect to disease

where p is the mean length of the latent period as defined by Shaner severity, x, equation 7 yields
et al (20). The term L/p estimates the average rate at which latently
infected host tissue becomes visibly diseased. The actual rate varies; L = apHx (I - x). (8)
it is probably most consistent during exponential disease progress
when the age distribution of latent infections is relatively stable. The validity of this steady state assumption for L has been tested

elsewhere (8). Numerical integration suggested that error intrinsic
to this assumption was likely to have a negligible effect onTABLE 1. Definitions and dimensions of algebraic symbolsa subsequent disease progress relative to the effect of error in
estimating the initial value of L in the field.

a = Mean infection rate (l/t) The task remains to relate equation 8 to the dynamics of diseaseB = Daily rate of uredospore release into the dispersal cloud per unit severity. Two processes lead to increases in disease severity: the
amount of infectious tissue (u/t) establishment of new infections and the expansion of establishedC = Per-uredospore rate of successful contact measured with respect to infections. The latter process generally contributes little to cereal
the proportion of vulnerable host tissue (l/[ut]) rust spread relative to the first (10,22,25) and so will not be

D = Rate of removal of uredospores from the dispersal cloud (l/t) considered further. Therefore, because the last term in equation 4E = Rate at which successful uredospore-vulnerable host tissue contacts ceredefurther. the c a the last term tin equtint
become established as latent infections (l/t) represents the rate at which the visibly diseased fraction of hostH = Vulnerable proportion of symptomless host tissue(- tissue increases through infection establishment, the rate ofI = Subscript indicating that the subscripted variable was evaluted at the increase in disease severity can be approximated by
inflection point (-)

i = Infectious fraction of visibly diseased host tissue (-) dx/dt = L/p.
k = Parameter measuring the rate of disease progress (l/t)
L = Latently infected fraction of host tissue (-) When equation 8 is substituted into this expression, the logistic
m = Parameter affecting mathematical structure () equation results:
p = mean length of the latent period (t)
r = Apparent infection rate (l/t) dx/dt rx (I - x), (9)

= Time (eg, days)
u = Mean daily number of viable uredospores in the dispersal cloud

(uredospores) where the apparent infection rate is
v = Vulnerable fraction of host tissue (-)
x = Visibly diseased proportion of host tissue (-) r = aH. (10)
y = Fraction of host tissue experiencing initial contact with a uredospore(-) In arriving at equation 10, I have neglected the fact that H, the
aParentheses following definitions enclose the dimensionality; eg, (u/t) vulnerable fraction of symptomless host tissue, decreases with
indicates that B is measured in uredospores per unit time; (-) indicates that disease severity, x. This dependence of H on x can be shown more
H is dimensionless. Rates referred to are mean instantaneous rates. explicitly. As discussed above, under the assumption that the
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proportion of latently infected host tissue, L, remains near its approaches the monomolecular when m = 2 and p is large, and

steady state value with respect to x, equation 8 applies. Substituting reduces to it exactly when m = p = 0. The logistic results when m = 2

equation 8 into equation 6 and solving for H emphasizes this and p = 0; equation 12 results when m = 2 and 0 < p < oc. This

dependence of H on x: expression reduces to the Gompertz,

H = 1/(1 + apx). dx/dt = kxln(l/x), (13)

Hence, according to the mechanistic derivation used here, either when m = I and p = 0 because

equation 10 should be replaced by li m-1
rn-- In 'JI"I

r = a/(1 + apx), (11)
According to the Gompertz model, plots of In (-1/lnx) against t are

or equation 9 should be written as linear with slope k.
Figure I provides plots of the logit and Gompertz

dx/dt = ax(l - x)/(l + apx). (12) transformations of solutions to equation 12. Because these
solutions are transcendental in x, they were computed numerically.

In either case, the robustness (5) of models that are essentially In contrast to the logistic model (equation 9), which is linear under

extensions of the logistic (eg, 21) is brought into question. logit transformation with slope r, equation 12 exhibits a decline in
slope (apparent infection rate) as x increases. This follows directly

DISCUSSION from equation 11. The fact that such a decline in slope is often
observed (1,28) provides some confidence in the ability of equation

The logistic model is typically used to describe the progress of 12 to describe disease progress. .

polycyclic or "compound interest" diseases (24). However, because The variation in slope in Fig. 1 shows that the logit

of its inherent symmetry, the logistic model does not accurately transformation is less effective at linearizing equation 12 than the

describe the asymmetrical disease progress curves frequently Gompertz transformation is. The mathematical reason for this can

observed. Berger (3) considered this problem in detail and found be deduced by comparing equations 9, 11, and 13 with respect to

that "the Gompertz model provided a better statistical fit than did their "saturation factors": ln(1 /x) provides a closer dynamic match

the logistic model for all 113 disease progress curves from 9 to (1 - x)/(I + apx) than does 1 - x for the values of ap and x.

pathosytems" that he examined. In discussing the general use of the logistic equation to describe

The Gompertz model is structurally related to both the logistic disease progress, Berger (2) remarks,

(17) and equation 12. These three models are also structurally
related to the monomolecular equation that Vanderplank (24) has "Although a credible statistical fit often occurs in the range

used to describe monocyclic or "simple interest" diseases. Each of 0.05 < x< 0.6, very poor fit is obtained when x is outside this

these four models represents simplifications of the equation range because of the asymmetrical shape of most disease
progress curves."

dx/dt = kx (xm-n-I-)/[(1 - m)(l + apx)],
The logistic equation predicts a daily increase of disease (dx/dt),

where k is a rate parameter (dimensioned t-') and m is a which is symmetrical about its time of inflection (the time at which

dimensionless nonnegative real number. This expression dx/dt is at its maximum in 0 < x < 1). In contrast, the observed
daily increase is commonly skewed to the right (3).
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Fig. 2. Daily increase of disease (dx/dt) as predicted by the Gompertz model

Fig. 1. Logit (broken line, In [x/(l - x)]) and Gompertz (solid line, In (solid line) and equation 12 (broken line). Parameter values are k = 0.2 for

[-l/lnx]) transformations of disease severity, x, resulting from the the Gompertz (equation 13) and a = 0.6 and p = 3.25 for equation 12.

numerical integration of equation 12 with the reasonable (11,14,15) value of Initially x = 0.0004. The points of inflection are tj = 10 for the Gompertz

14 days for the cereal rust latent period and a mean infection rate of 0.16 per and, as indicated by the vertical line, tj = 13.5 for equation 12. Solutions
day to give a large range of x values. Initially x = 0.01. were calculated numerically.
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As shown in Fig. 2, such skewness to the right is consistent with grounds except as an imitation of equation 12. It follows that the
both the Gompertz equation and equation 12. Parameter values Gompertz model does not merit serious consideration as an
were chosen to make this figure readily comparable with Berger's explanatory model.
(3) Fig. 2. The initial value of x and thp value of k are identical to This leaves equation 12 as the best available explanatory model.
those used by Berger; equation 12 was provided an inflection point Notwithstanding, it too has its shortcomings, perhaps the most
in terms of x comparable with that of the Gompertz equation (by important being the assumption that a constant proportion, i, of
setting ap = 1.95), and it was given a height comparable to the visibly diseased tissue is infectious. Actually, i is likely to exhibit a
logistic equation of Berger's Fig. 2 (by setting a = 0.6). The net decline during the course ofthe disease season. Using the potato
skewness to the right exhibited by equation 12 is emphasized by late blight simulation model of Bruhn et al (4), one can show that i is
comparison of the area under the curve on each side of the vertical probably a complex function of x and t.
line that marks the time of inflection (t, = 13.5). ., Futhermore, equation 12 still needs to be tested. Integrating it

Figures 1 and 2 have relied on particular values of a and p to and then rearranging the integral produces an expression from
illustrate how well equation 12 can mimic the Gompertz model. which the infection rate parameter, a, can be calculated:
Figure 3 provides a more general comparison.

Points of inflection, xi, were determined by setting a =ln[xt/(l - xt)] - ln[x/(l - xo)]
t - p ln[(l - Xo)/(l - xt)]

6(dx/dt)/6x = 0 where x0 and xt are the disease severities at times 0 and t,

dsolving for x, x. Hence, in equation 12, the inflection point is respectively, and p is the latent period. Hence, equation 12 predicts
and sla linear relationship (with slope a) between logit (xt) and t - p ln[( l

x, = (\/[I + ap] - 1)/ap. (14) - xo)/(l - xt)]. Here p should be estimated independently, perhaps
using by the procedure developed by Shaner et al (20). This

Figure 3 shows that for any ap exceeding approximately 0.65, the prediction provides a means of testing the validity of the model and

inflection point of the Gompertz equation (xi = 0.368) better thus establishing its limitations (7).
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