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ABSTRACT

Jeger, M. J. 1982. The relation between total, infectious, and postinfectious diseased plant tissue. Phytopathology 72:1185-1189.

A new mathematical analysis that links the rates of change of total,
infectious, and removed (postinfectious) diseased plant tissue is presented.
Equations are obtained that give the proportion of total diseased tissue that
is infectious or postinfectious in terms of biologically meaningful
parameters. These are the rate of increase per infectious diseased tissue, and
the rates at which disease progresses from the latent to the infectious and
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from the infectious to the postinfectious condition. Comparisons with the
parameters R, p, and i of Vanderplank's differential-difference equation are
made. Reported instances in which disease increase is unexpectedly rapid
after a fungicide program ends are explicable in terms of this analysis, but
experimental corroboration is lacking.

The recent development of models and simulation techniques in
the epidemiology of plant diseases owes much to the conceptual
and mathematical framework provided by Vankerplank (8-10).
Modeling now is nearly always done by using a digital computer
(an aid that Vanderplank [8-10] largely did without), which is
considered by most epidemiologists to be indispensable.

The diversion of modeling effort into simulation might well
prove important in the ‘tactical’ management of plant disease, but
that should not obscure the many unresolved problems in the
theory of plant disease epidemics. One such problem is the relation
between infectious and total diseased tissue, in which the term
“infectious” denotes those units of diseased tissue actually
producing inocula, and the term “total™ includes latent and
“removed” (postinfectious) as well as infectious diseased plant
tissue. How does this relation change as an epidemic progresses to
completion under ideal environmental conditions, or is perturbed
by human intervention and adverse weather? Virtually no advance
has been made since Vanderplank (8) presented equations of
disease increase. These will be restated; followed by a new analysis
that supplements and extends Vanderplank’s treatment. For
brevity, Vanderplank’s treatment of “removals” or progression to
the postinfectious condition is omitted. The terms “infectious
disease” and “removed disease™ can be objected to and will not be
used in this paper; they have been replaced by the less ambiguous, if
cumbersome, “infectious diseased tissue” and “postinfectious
diseased tissue.”

In the simplest case, which involves logarithmic increase and
ignores postinfectious tissue, so that there are only two categories
of diseased tissue—latent and infectious,

dx,/dt=rx, (D
dx /dt= RxI_P (2)

in which x, are units of diseased tissue (latent plus infectious) at
time ¢, p is the duration of the latent period, X, are units of
diseased tissue at time —p and hence infectious at time ¢, and rand
R are Vanderplank’s apparent and basic ‘infection’ rates,
respectively.
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The status of these equations is arguably different. Equation 1 is
an operational definition of an empirical parameter r, the rate of
disease increase per diseased tissue unit, whereas equation 2 is more
explanatory; both p and R, the rate of disease increase per
infectious tissue unit, have biological meaning and new infections
are ascribed only to infectious diseased tissue. The two equations,
however, can be related. A particular solution to equation | can be
rewritten as

X, x, = exp (—pr) (3)

which gives, according to this model, the proportion of total
diseased tissue that is infectious. Referring to equations | and 2
gives the relationship established by Vanderplank (8),

r= Rexp (—pr). (4)

Unfortunately, although this transcendental equation can be
solved graphically, Jr,_!,,f;rr is not explicitly given by R and p, the
parameters that have biological meaning. A similar effect is
obtained when postinfectious tissues are taken into account.

If disease is measured as a proportion of an upper limit to disease
and logistic versions of equations | and 2 are considered, then

dx,/dt=rx, (1-x) (5)
and dx /dt= Rx‘,_P(]—x,]. (6)

Equation 6 is now the one with biological relevance. However,
unlike equations | and 2, equation 5 cannot be consistent with
equation 6 (or its equivalent, including postinfectious tissue) unless
r is a variable, which severely restricts further analysis.

Can the analysis of plant disease epidemics, which takes into
account infectious diseased tissue, be developed further? Several
possibilities exist: analytical treatment of the differential-difference
equations (7,11), simulation (12), and matrix modeling (5). The
following approach, which is used in medical epidemiology (2),
specifies differential equations for categories of disease and is most
relevant for polycyclic fungal epidemics. The intention is to develop
relationships between infectious, postinfectious, and total diseased
tissue under two sets of conditions, one set during the early stages of
an epidemic and one set during the later stages when the availability
of healthy tissue places an upper limit to the amount of disease. For
each set of conditions, the analysis will be developed first without,
and then with, the effect of postinfectious diseased tissue.
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MATHEMATICAL ANALYSIS AND INTERPRETATION
OF RESULTS

Early stages of epidemic—no progression to the postinfectious
condition. Suppose that disease increases according to

dx/di = ks (7)
and ds/dr = ks (x—s) (8)

in which x represents total diseased tissue (say latent-plus-
sporulating lesions), s represents infectious diseased tissue
(sporulating lesions), and k) and k: are positive rate parameters.

Whereas equations | and 2 describe only the increase of total
diseased tissue, equations 7 and 8 link both total and infectious
diseased tissue.

From equations 7 and 8, linear second-order differential
equations in x, or in s arise. For s,

d’s/di* + k> ds/dt — kikas = 0. 9)

The general solution of equation 9 is well known (4, Chapter 4-2)
and because of the negative term, solutions take the form

5= A exp (M) + Bexp (M) (10)
with M= —k2/ 2+ (k' + 4 kika)/4
A2 =—ka/2 =/ (k2* + 4 kika)/ 4.

Two initial conditions are required for a particular solution.
Suppose (as will be done throughout this paper) that all disease is
latent on day r=0; ie,s=0, and thatds/ds = k2xo. Then solving for
A and Bgives A= kaxo/(Ai—X2)and B=—k> xo/ (\1—A2), which can
be substituted in equation 10.

Note, however, that it k1>>k, then A=v/(kik:) and
X2=—+/(kikz), and a good approximation for s is given by the
hyperbolic sine function

5= xo\/ k2/ ki sinh (\/ kika t). (1)

Substituting s into equation 7, and integrating, gives

x = xo cosh (N kika2 1) (12)

and from equations 11 and 12

s/x= (ka2 ki) tanh (\/ kik2 1) (13)

which gives the proportion of total diseased tissue that is infectious.
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Fig. 1. Progressive increase of total (x) and infectious (s) diseased tissue in
multiples of xo (ordinate A). Proportion of diseased tissue that is infectious
(s/ x) and relative rates of its increase per day (ordinate B). Parameter values
are ky = 0.8 day™' and 1/k; = 20 days.
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The relative rates are given by
(1/x)dx/dt =/ kik: tanh (\/ kik2 1) (14)
(1/s5) ds/dt = \/kik2/tanh (\/ kik2 1). (15)

When \/(kikz) 1 = ~2.5, then the proportion of diseased plant
tissue that is infectious (s/x) will be approximately constant
(= \/(kz,fku}). as will both relative rates (= \/(kik2)).

From equations 13 and 14 (or directly from equation 7, x % 0),

(1/x) dx/dt = kis/ x. (16)

That is, the relative rate of disease increase is directly proportional
to the proportion of diseased tissue that is infectious.

Total diseased tissue (equation 12) and infectious diseased tissue
(equation 11) during the early stages of an epidemic are plotted in
Fig. | for given values of k; and k2 (with &, 16 times greater than k).
Also shown are the proportions of diseased tissue that is infectious
(equation 13) and the relative rates of increase (equations 14 and
15), each of which approaches a constant value. Fig. 2 shows this
constant proportion and relative rates that arise for a
representative range of values of k) and k. It can be seen that a high
ki and 1/k: will mean that a low proportion of diseased tissue is
infectious. Conversely a small k; and 1/k:; will mean that a high
proportion of diseased tissue is infectious. A low relative rate
occurs only for small values of k; a high relative rate occurs only
for small values of 1/k:.

Equations 14 and 15 give the relative rates explicitly in terms of
ki and ka. This is equivalent to finding an explicit expression for rin
terms of R and p (which equation 4 fails to do).

The simple form of the solutions given in equations 11-15
depend on ki>>k; and on a particular specification of the initial
state of disease. However, equation 10 can be investigated without
restriction on the comparative values of ki and k2, with many
different initial conditions depending on the original configuration
or ‘age structure’ of the epidemic and new formulations of
equations 11-15 arise. It is not the intention here to be exhaustive.

The importance of the dimensionless parameter (k2] k1) is clear
from equation 13. The question arises as to how k; and k: relate to
the parameters in equations 1-6? The parameter ki, the rate of
increase in total diseased tissue per unit of infectious diseased tissue
is comparable to Vanderplank’s R as defined by equation 2. The
parameter k> gives the rate at which lesions are progressing from
the latent to infectious condition. On any given day at time ¢ there
are x—s lesions in latency. It can be shown that the mean length of
time that these lesions subsequently remain in latency is given by
1/k2. Hence R and 1/p are comparable, but not equivalent, to k;
and ki. Different models of infectious disease are involved;
equation 2 implies a latent period of fixed and determinate
duration as opposed to the mean parameter derived here. Neither
model allows for the stochastic nature of the latent period and the
distributions that follow. However, from the many examples given
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Fig. 2. Proportion of diseased tissue that is infectious (s/ x) and relative rates

of its increase (per day) that stabilize during the early stage of an epidemic for

a representative range of values of k; and 1/kz.



by Vanderplank (8), estimates of R are usually in the range 1.0~10.0
(per day) or even higher, and for p in the range 5-30 days. This,
despite the qualification above, gives some justification for an
assumption that k\>>k,.

Early stages of an epidemic—with progression to the
postinfectious condition. Suppose that disease increases according
to equation 7, but that x now includes postinfectious as well as
latent and infectious units of diseased tissue. New equations have to
be specified for the rates of increase of infectious and postinfectious
diseased tissue. Suppose that

ds/dt=ka(x—(s+r))— ks (17)
and
dr/dt = ks (18)
in which r are units of postinfectious diseased tissue (say sterile
lesions) and k is a positive rate parameter.
Equations 7, 17, and 18 now link together the rates of increase of
total, infectious, and postinfectious units of diseased tissue. From

these equations, linear second-order differential equations arise.
For s,

d’s/di’ + (ks + k2) ds/dt — ka (ki — ka) s = 0. (19)
Note immediately that if k3 = 0; ie, no postinfectious diseased
tissue, then equation 19 reduces to equation 9.

Solutions of equation 19 again take the form of equation 10

s= Aexp(a;t)+ Bexp(azt) (20)

with  a1=—(ks+ k2)/2 + \/{(h + k) +4 ks (ko — fu}}M

ar=— (ks + k22— \/{{ks +h) +ak (ki — k,)}m .

For positive values of k1, k2, and ks then a; and a; are unequal real
numbers (the term beneath the square root sign is always positive).
Hence solutions for s do not oscillate but increase if ki>k; and
decrease if ki<ki;. Note also that if k1>> (k2 + k;) then
m"—“\X(klkz] and as = — /(kik2) as before. Initial conditions are
required. Suppose, as before, that all disease is latent on day r = 0;
ie, s =0, r=0, and that ds/dr = kaxo. Then

5= kaxo (exp ay 1 — exp a2 1)/ (a1 — a2). (@n
Substituting s into equations 7 and 18, and integrating, gives

x=xo (1 + ki g(n) (22)
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Fig. 3. Proportion of diseased tissue that is infectious (s/ x) (solid lines) and
removed (postinfectious) (r/ x) (broken lines) for parameter values of k; =
0.8day”', I/ ks =20 days together with a high (1/ ks = 10 days) or low (1/ ks =
50 days) rate of progression to the postinfectious condition.

and r=kaxo g(1) (23)
in which g is the function
gl = k2 { 1 + (a2 exp e t — oy exp az 1)/ (o) —az}} |y @,
From equations 22 and 23
rl(x —x) = ka/ki. (24)

Hence, as x increases, the proportion of total diseased tissue that is
postinfectious is approximately constant (=ki/ k).

The proportions of diseased tissue that are infectious and
postinfectious, calculated from equations 21-23 are plotted in Fig.
3 for the values of k; and k2 used in Fig. 1, but with two values of k3,
representing a very low (0.02 day™') and a reasonably high (0.10
day™") rate of progression to the postinfectious condition. The
effect of progression to the postinfectious condition on reducing
the proportion of diseased tissue that is infectious is clearly shown.
The importance of the dimensionless parameter ks/ ky is clear from
equation 24, The parameter ks gives the rate at which lesions are
progressing from the infectious to the postinfectious condition. By
the same reasoning used before, the mean length of time spent
infectious is given by 1/k;—a parameter comparable to i, the
symbol used by Vanderplank (8) to denote an infectious period of
fixed and determinate duration. Interestingly the result here, that
ki>ks for s to increase, corresponds to Vanderplank’s epidemic
threshold theorem, iR>1.

Later stages of epidemic—no progression to the postinfectious
condition. Suppose now that there is an upper limit to the amount
of diseased tissue and that total disease measured as a proportion of
this upper limit increases according to

dx/dt = kis (1 — x). (25)

Infectious diseased tissue again measured as a proportion of the
upper limit, increases according to equation 8. Then second-order
differential equations result for x or 5. For s,

d’s/di + (ka + kus) ds/dt — kikas (1 — 5) = 0. (26)

This is a nonlinear equation, less tractable analytically than those
preceding and can be considered elsewhere. However, if ki >>k,,
so that s is small compared to x during the early stages of the
epidemic, and given the initial conditions as before, then an
approximation for s in terms of x can be derived from equations 25
and 8.

s=vVklk {-20n(1-x+x} 7 (27)
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Fig., 4. Proportion of total diseased tissue that is infectious (s/x) as a
function of total disease (x) for three values of \/{kz!m).
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From equation 27 can be obtained the proportion of diseased tissue
that is infectious during the epidemic. For small x this is
approximately equal to \/(k2/ k1), but even at higher values of x the
proportion of diseased tissue that is infectious is determined largely
by the parameter \/(k:/ k1); this is shown in Fig. 4 for given values
of \/(k2/ k1). The plots have been terminated at the point where the
amount of latent diseased tissue (x — s) is at a maximum—equiva-
lently when ds/dx is unity. Thereafter the proportion increases
rapidly and s/ x = | (ie, all disease is sporulating) for some value of
x<1. Ignoring postinfectious diseased tissue is patently unrealistic
at these high levels of disease and equation 27 is of limited
applicability.

Later stages of epidemic—with progression to the postinfectious
condition. Suppose that disease increase is now specified by
equations 25, 17, and 18. It is possible to derive a higher order,
nonlinear differential equation, but this is not particularly useful. It
is not, in general, possible to solve for sin terms of x. However, the
proportion of diseased tissue that is postinfectious during the
epidemic can be derived.

From equations 18 and 25

dridx=ks/ ki (1 — x). (28)

Integrating and specifying, as before, that at r = 0, r = 0 gives
r=(ks/k1) (In (1 — x0) — In (I — x)). (29)
From equation 29 can be obtained the proportion of diseased tissue
that became postinfectious during the epidemic. For small values of
x this is approximately equal to k:/k, thereafter the proportion
increases until r = x. This is shown in Fig. 5 for given values of
ki/ k1. Note that r/ x = | for some value of x<{1.0. But at this value
of x there can be no further increase in diseased tissue; all of it is
postinfectious. Hence this value of x, say xm, is the maximum

possible amount of diseased tissue for given values of k3 and k.
Equation 29 may now be written as the relationship

Xmax = (k3/ k1) (In (1 = x0) = In (1 = xmax)). (30)
If xo is very small then equation 30 rearranges to
xmax = 1 —exp (— (k1/ k3)xmaz) 30

which is directly comparable to the relationship proposed by
Vanderplank (10)

L=1—exp(—iRL) (32)

o5k kglky = 030—=,

kalky=020—=
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Fig. 5. Proportion of total diseased tissue that is removed (postinfectious)
(r/x) as a function of total disease (x) for three values of ki/ k..
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in which L is the maximum amount of diseased tissue.
Vanderplank’s derivation was by (presumably numerical)
integration of the differential-difference equation (9,10). The
analytical derivation here is also independent of the rate at which
diseased tissue is progressing from the latent to infectious
condition,

IMPLICATIONS OF THE MODEL

Any model, by itself, is incomplete; evidence is required showing
how the proportion of total diseased tissue that is infectious or
postinfectious varies over the time span of an epidemic, and how
this is affected by weather conditions and human intervention.

For example, it has sometimes been noted that disease increase is
unexpectedly fast on sprayed compared to unsprayed plants
following the loss of fungicide effectiveness (3). This phenomenon
is explicable in terms of the analysis given here. Suppose that
disease is increasing at a given relative rate in two sets of plants. One
set is sprayed with a protective fungicide and no new infections
occur over the period of fungicide effectiveness; ie, ki = 0.
Infections, however, are still progressing from the latent to the
infectious condition. Hence, at the end of the period of fungicide
effectiveness, the proportion of diseased tissue that is infectious
(s/x) will be higher than at the beginning, if there has been no
progression to the postinfectious condition. If the value of k;
subsequently returns to the value prior to spraying, then by
equation 16 the relative rate, (1/x) dx/d¢, will of necessity be higher
in the sprayed compared to the unsprayed plants at the same level
of disease. If there has been progression to the postinfectious
condition, then the result depends on the rates at which lesions are
progressing from the latent to the infectious and from the infectious
to the postinfectious condition. If the latter rate of progression of
infectious host tissue to the noninfectious state is the lower of the
two rates, then the proportion that is infectious will increase; if the
higher, then the proportion that is infectious will decrease. If the
rates are equal, then the proportion that is infectious will remain
the same. This has obvious implications for the epidemiological
action of fungicides. For example, it points to the inadvisability of a
reduced spray program if only protective fungicides are available.
Similar implications hold for any situation in which the dynamics
and ‘age structure’ of disease have been perturbed (1).

The assessment of the proportion of diseased tissue that is
infectious has rarely been attempted and, undoubtedly, will require
much technical ingenuity. It is not sufficient to compare, say, the
ratio of observed disease at times ¢ and r—p—this merely
presupposes the validity of equations 2 and 6. Similarly latent and
infectious period distributions need to be established
experimentally and compared with theoretical distributions. A
start has recently been made by Shaner (6) with latent period
distributions. It could well be that numerical methods are
indispensable in further detailed work. The contention of this paper
is that analytical approaches can achieve valuable, even if
simplified, insights into this area of epidemic theory; insights that
are not readily obtained by numerical methods alone. Arguably,
this interplay between theory and experiment is still one of the most
valuable uses of modeling for the epidemiologist.
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