Long-Term Survival of *Pseudomonas syringae* pv. *tomato* and *Xanthomonas campestris* pv. *vesicatoria* in Tomato and Pepper Seeds

Y. Bashan, Y. Okon, and Y. Henis

Instructor, senior lecturer, and professor, respectively, Department of Plant Pathology and Microbiology, Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.

Present address of senior author is Division of Plant Pathology, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet-Dagan 50250, Israel.

We thank S. Diab for technical assistance and E. Koper from “Hazera” Co., Haifa, for supplying infested seeds. This research was partially supported by Grant 823/626 from the Agricultural Research Organization, Ministry of Agriculture, Israel and by Grant 1-214-80 from the United States-Israel Binational Agricultural Research and Development Fund (BARD).

Accepted for publication 30 December 1981.

ABSTRACT

Pseudomonas syringae pv. *tomato* (Okabe 1933) Young, Dye, and Wilkie 1978, the causal agent of bacterial speck of tomato and bacterial scab of pepper, survived on dried seeds for 20 and 10 yr, respectively. Seedlings from old infested seeds either developed visible disease symptoms or no symptoms. Symptomless plants grown under high relative humidity contained massive populations of the pathogen.

Long-term survival of phytopathogenic bacteria in seeds of vegetables has a significant economic importance for both seed production companies and growers. Dissemination of infested seeds in plots with no disease history has often resulted in an unnecessary damage (7,13).

Pseudomonas syringae pv. *tomato* (Okabe 1933) Young, Dye, and Wilkie 1978 are known as major sources of inocula for bacterial scab of pepper (3,5,6,17). The common hypothesis for the phenomenon of long-term survival of pathogenic bacteria suggests that the pathogen persists by passing into a hypobiotic state, a state of substantially reduced metabolism (10). However, this hypothesis has not been verified.

The purpose of this study was to further examine the relation between the hypobiosis theory and the survival of these phytopathogenic bacteria on seeds.

MATERIALS AND METHODS

Organisms and growth conditions. We tested commercial summer crops of pepper and tomato seeds harvested at various seasons. Tomato cultivars and years harvested were: Marmande, 1962 and 1972; VF-196, 1975, 1976, and 1977; VF-145-513, 1976; VF-145B-7897, 1976; M-82, 1977; Rehovot, 13, 1976; VF-317, 1976; Mcheeast 55, 1976; VF-134-1, 1976; VF-134-1-2, 1976. Pepper cultivars harvested were: Ma’or, 1977, 1978, and 1979; and Kalenkov, 1972. Seeds were sown in plastic pots (100 seeds per pot) on King’s medium B (9) in the case of *P. syringae* pv. *tomato*. Plates were incubated at 30 C for 48 hr. Control plates for the above method were prepared from homogenates of leaves treated with sterile water, surface-disinfested seeds (pretreated with 3% NaOCl for 5 min and washed five times with sterile water), or from uninoculated leaves. Suspected colonies were tested for pathogenicity (1). Procedures used for inoculum preparation and mist chamber conditions were as described elsewhere (1,4,12).

Germination test. One hundred seeds (in 10 replicates) were treated with Thiram (TMTD) 50% powder (2 mg/g seeds) to prevent contamination with fungi and placed on Whatman No. 1 filter paper disks (9-cm-diameter) that had been soaked with 5 ml of distilled water. The seeds were incubated in a growth chamber (16 hr light, 5,000 lux, 25 C). Germination was recorded at the end of 10 days for tomato seeds and 20 days for pepper seeds.

Bacterial counts from leaves and seeds. The presence of pathogenic bacteria in seeds and leaves of tomato and pepper was examined. Three grams of seeds or 2 g of leaves (three replicates from each sample) were homogenized for 3 min in sterile phosphate buffer in an Omni-Mixer immersed in an ice bath. Bacterial populations were determined by the dilution plate count method (18).

Seed infestation and storage. Tomato seeds were infested by soaking 10-g samples in 10 ml of solution containing 10^6 P. syringae pv. *tomato* colony-forming units (cfu) per milliliter under water pump vacuum. The vacuum was abruptly broken to obtain penetration of bacteria into seed cavities. Seeds were air-dried for 24 hr in a laminar-flow hood at 35 C. Other samples of naturally infested commercial tomato and pepper seeds were obtained from diseased fields; infestation was indicated because their emerging...
TABLE 1. Long-term survival of Pseudomonas syringae pv. tomato and Xanthomonas campesiris pv. vescicatoria in tomato and pepper seeds

<table>
<thead>
<tr>
<th>Cultivar and pathogen</th>
<th>Storage time (years)</th>
<th>Deseased seedlings* (%)</th>
<th>Pathogen after enrichment† (cfu/g leaf)</th>
<th>Pathogenicity test‡ (%)</th>
<th>Germination§ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomato - P. syringae pv. tomato</td>
<td>VF-317</td>
<td>6</td>
<td>2a</td>
<td>2.6×10^6 c</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>VF-198</td>
<td>5</td>
<td>13 b</td>
<td>8.1×10^6 d</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>VF-198</td>
<td>7</td>
<td>0 a</td>
<td>0 a</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Marmande</td>
<td>10</td>
<td>4 a</td>
<td>6.0×10^5 b</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Marmande</td>
<td>20</td>
<td>1 a</td>
<td>4.8×10^6 b</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>M-82</td>
<td>3</td>
<td>0 a</td>
<td>0 a</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VF-134-I-2</td>
<td>6</td>
<td>0 a</td>
<td>0 a</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Behrovot-13</td>
<td>6</td>
<td>42 c</td>
<td>7.4×10^6 d</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>VF-134-I †</td>
<td>6</td>
<td>60 c</td>
<td>2.9×10^5 c</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>VF-145-S136 ‡</td>
<td>6</td>
<td>7 b</td>
<td>3.1×10^6 c</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>VF-145-S789</td>
<td>6</td>
<td>5 ab</td>
<td>4.7×10^5 c</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Mecheata 55€</td>
<td>6</td>
<td>4 a</td>
<td>1.1×10^6 b</td>
<td>+</td>
</tr>
</tbody>
</table>

Pepper - X. campesiris pv. vescicatoria

Ma'or | 2 | 5 b | 2.6×10^5 b | + | 92 |

Ma'or | 3 | 0 a | 0 a | - | 88 |

Ma'or | 4 | 3 b | 1.8×10^5 b | + | 73 |

Kalenkov | 10 | 0.6 a | 8.2×10^5 b | + | 37.3 |

* Numbers followed by different letters in the same column (for every plant-pathogen interaction) differ significantly at P = 0.05.
* Artificial infestation.
† 16 samples, each from a different field.
‡ Triplicate samples each of 1,000 seedlings were examined for symptoms.
§ Triplicates, 2 g of leaves (fresh weight) for each replicate.
* Three plants (with four true leaves) were sprayed with the compatible pathogen (10^5 cfu/ml) until runnoff and incubated in a mist chamber for 8 days.
\ $\frac{\text{Five replicates}, 100 \text{ seeds for each replicate.}}{}$

RESULTS AND DISCUSSION

Infested seeds are important sources of pathogenic bacterial infection of plants. Seeds play a double role in the spread of bacterial diseases. They provided a site for overwintering of bacteria and for infection of seedlings, and they may transmit bacteria over long distances (7,14). The pathogens that cause bacterial speck of tomato and bacterial scab of pepper are seedborne (3,4,17); therefore, eliminating them is rather difficult (4,16). It is known that P. syringae pv. tomato can survive on dried tomato seeds for at least 6 mo (4) and that X. campesiris pv. vesciatoria can survive on tomato seeds for up to 16.5 mo (5,6).

The hypobiosis theory of Leben (10,11) suggests that bacteria survive in a state of reduced metabolism. The theory has not been satisfactorily substantiated, possibly for technical reasons involving the difficulty in planning experiments that continue for several years. However, some reports indicate that Corynebacterium flaccumfaciens pv. flaccumfaciens and X. campesiris pv. phaseoli can survive on bean seeds for between 3 and 24 yr (2,14,15,20). When attempts to detect pathogenic bacteria by the dilution count plate method (in which seed homogenates are plated on solid agar medium) failed, the leaf enrichment method (8,16) was used. Thirty-two seed lots were checked after several years of storage. Some of the naturally infested seed lots were found to be contaminated with the compatible pathogens. These pathogens initiated disease symptoms either in the emerging seedlings inoculated and incubated in mist chamber conditions, or on detached leaves. All the 6-yr-old, artificially infested tomato seed lots contained the pathogenic P. syringae pv. tomato. Furthermore, seed lots that generated higher percentages of diseased seedlings, generally showed a higher rate of multiplication of the pathogen in detached leaves (Table 1). The evidence provided here showed that in Israel the main bacterial disease agents of tomato and pepper can survive for long periods of time and gave support to the hypobiosis hypothesis. The seeds had been infested once and subsequently had been maintained for many years under conditions unfavorable for bacterial development. P. syringae pv. tomato was first detected in Israel in 1971 (19). Its presence in 20-yr-old seeds suggested that it is a local pathogen. The increase in bacterial speck severity during the last 10 yr may have resulted from a change from resistant cultivars to susceptible cultivars.

Results of this study suggest that bacteria in “dried” form can survive for long periods of time. Thus, old seed stocks maintained for breeding programs and cultivar collections may be sources of dormant “latent” infestations that can be “awakened” and initiate disease in susceptible plants. They should be tested for presence of bacterial pathogens before being used.

LITERATURE CITED