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Ina letter to the editor of this journal, C. A. Gilligan (3) proposed
equations for calculating the width of rhizospheres and
spermospheres. I recently attempted to use the published equations
for such calculations and sometimes obtained negative values for
rhizosphere and spermosphere widths.

The purposes of this letter is to describe this situation, and to
present an alternative model.

PROBLEMS WITH THE MODEL

Gilligan (3) proposes a model of rhizosphere infection based on
the prediction of the number of infections or “hits” H on a root
system which consists of M roots of mean length L and mean radius
r. A number of pathogen propagules N of radius r; are distributed
inavolume of soil ¥, and can infect if they are closer than a certain
distance from the root surface W. The proposed equation is:
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Equation 1 is also presented in a rearranged form that permits the
calculation of W, the width of the rhizosphere. The proposed
equation (after correction of a typographical error) is:

W=( HY )'f(,,ﬂ,.) @)
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A similar equation is presented for the calculation of a
spermosphere around a seed. The proposed equation (after
correction of a typographical error) is:
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in which M is the number of seeds, and r is the mean radius of a
seed. Equations 2 and 3 may be used to calculate values of
rhizosphere and spermosphere widths; however, when certain
values of the parameters are used, the calculated value of Wis less
than zero. This situation can be illustrated with equation 3.
Rearrangement of equation 3 indicates that W is less than zero
when:

M _ dr
NIV 3

(ry+r). 4

Thus, equation 4 predicts that for any particular seed (r,) and
inoculum (r;) sizes, there exists a ratio of hits per seed (H/M) to
inoculum density (N/V) below which the width of the
spermosphere is a negative number. The treatment of such negative
spermosphere widths is not mentioned by Gilligan (3). However,
the value for the spermosphere width presented for chitin-amended
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soil in Table | of his paper can only be obtained if calculated
negative spermosphere widths are treated as being equal to zero.
Although such a protocol would be mathematically correct if it
were specified in the model, its existence would make the equation
of questionable value for the calculation of spermosphere widths
from experimental data.

PROPOSED MODEL

The equations developed herein are intended to be used in the
calculation of theoretical rhizosphere or spermosphere widths from
experimental data. Because of this objective, an attempt has been
made to base the model on a few simple assumptions about the
physical configuration of the soil-microorganism-plant system.
The basic concept of the rhizosphere as a volume of soil that
surrounds a plant part has been used by a number of authors
(2,5,6,8); however, this concept has not been used in the
development of specific equations for the calculation of
rhizosphere or spermosphere size.

If every competent propagule (sensu Grogan et al [5]) in a certain
volume of soil can initiate an infection, then the number of
infections or “hits™ H is equal to the number of competent
propagules in that volume, and can be expressed as a function of
pathogen inoculum density /, the volume of soil S, and the
competence C of the propagule population:

H=ICS (5)

in which 0 < €< 1. If both sides of equation 5 are divided by the
number of infectable units (seeds, root pieces, plants, etc.) M, then
the equation may be rearranged to express the volume of the
spermosphere or rhizosphere for each unit §/ M as a function of J,
C, and the number of infections per unit H/ M:

o HIM
SpME— (6)

Note that as C becomes smaller, H/ M becomes larger,and when C
=1, then

H/M
S|M=—="

Thus, a “minimum volume” for a rhizosphere or spermosphere (ie,
when C = |) can be calculated on the basis of pathogen inoculum
density and the number of infections per unit. If actual infection
data are available, and it can be assumed that propagules are
randomly distributed in soil, then the theoretical number of
infections per unit may be calculated with the multiple infection
transformation (4). If only disease incidence data are available, a
minimum volume may be calculated by substituting D/ M, the
multiple infection transformation of disease incidence, for H/ M.
Because a minimum of one infection must initiate each case of
disease, H/M will always be greater than or equal to D/ M. Thus,
substitution of D/ M for H/ M can result in the underestimation,
but not overestimation, of the value of S/ M.

Tocalculate the distance from a plant part from which infections
have taken place (ie, the width of the rhizosphere or spermosphere)
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it is necessary that the volume calculated in equation 6 be
associated with a physical configuration appropriate to the plant
part. For a seed, the volume defined by two concentric spheres
might be appropriate:

3
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in which ¥, is the volume of the sphere that delimits the outer limit
of the spermosphere and ¥, is the volume of the sphere that delimits
the inner limit of the spermosphere (ie, the surface of seed), and r,
and r, are radii of the outer and inner spheres, respectively. The
width of the spermosphere is W = r, — r,. This value may be
obtained by combining equations 5 and 7:

HM_4mr’ 4anr’

Ic 3 3 ®
rearranging to make r, the dependent variable:
(3 HIM 1)""
ro= \Gmrc T 7s (9)
and then subtracting r, from both sides of equation 9:
/3
W=r,—r (3::;? + rj) = (10)

A similarequation may be derived for M root pieces of length Land

radius r,:
12
HIM
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Rearrangement of equation 10 indicates that W is less than zero
only when:

W=r,—
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Because an experimentally determined H must be greater than or
equal to zero, all calculated values of W must thus be greater than
or equal to zero.

LIMITATIONS OF THE PROPOSED MODEL

Equations 6, 10, and |1 may be used to calculate parameters for
rhizosphere and spermosphere size in a variety of situations;
however, their limitations should be recognized. In particular, it
should be noted that the finite value of W that can be calculated
using equations 10 or Il is only a gross approximation of the
relationship between the probability that a propagule can infect
and its distance from the host. In a real-world situation, the
probability of infection would decrease gradually with distance,
rather than abruptly decrease to zero at distances greater than W. It
should also be noted that a number of factors can influence the
value of C, the competence of the pathogen propagule population.
Host resistance, environmental variables, the presence of other
microorganisms, and a nonrandom distribution of inoculum would
all serve to reduce the value of C below one, and thus cause the
calculated values of S/ M and W to underestimate the true values.
Similarly, the use of disease incidence, rather than infection data
for the calculations can result in underestimation of §/ M and Wif
more than one infection is necessary for disease expression. It
should also be noted that the size of the plant part assayed (the seed
orroot segment) is not necessarily the same as the size of the actual
infection site. If only a portion of the plant part is actually
infectable, then the calculated value of W would be an
underestimation of its real value. The accuracy of estimation of
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S/ M or Walso is dependent on the accuracy with which /has been
measured. If 7 has been underestimated (such as is usually the case
when 7 is determined by soil assay), then S/ M and W will be
overestimated.

Two aspects of the soil-microorganism-plant system which were
intentionally excluded from the model are the effect of propagule
size on rhizosphere size, and a qualitative distinction between
rhizosphere and rhizoplane effects. The model may be useful for
investigating both of these phenomena, however. If calculated
values of rhizosphere size were compared with propagule size for a
number of different pathogen-plant systems, some overall
relationship between rhizosphere size and propagule size might be
established. Similarly, comparison of rhizosphere size and
propagule size in a single system may allow a decision as to whether
a rhizosphere or rhizoplane effect is in operation. If the calculated
rhizosphere size is close to the propagule diameter, it is possible
that a rhizoplane effect could be operating (ie, only propagules very
close to the plant cause infections); however, it is also possible that
rhizosphere size has been underestimated.

INTERACTIONS WITH OTHER MODELS

Because data for the calculation of rhizosphere or spermosphere
widths must come from inoculum density—infection experiments, it
is important to examine relationships between the width models
(equations 10 and 11) and existing inoculum density-infection
models. These models involve expressions of number of infections
H, or number of infections per unit H/ M, as a function of inoculum
density /. For calculating rhizosphere width, a regression equation
would be fitted to /-H | M data, the regression equation would be
substituted for H/M in equations 10 or 11, and then W would be
calculated as a function of /. If the ratio of H/ M to I was constant
over the entire range of /s used (ie, a linear relationship existed),
then W would be the same for all values of I. If the ratioof H/ M to ]
varied with 7, then the calculated W would change with /. An
appropriate /-H/ M model should adequately describe both of
these two situations, and not produce nonsensical values of W.
Three models will be examined.

Baker and co-workers (1,2) proposed that I-(H/ M) data be fitted
to an equation of the form:

H|M=ki* (13)

where k and b are constants. In this theory, the value of b is taken to
indicate whether a rhizosphere (b = 1) or rhizoplane (b = 0.67)
effect is in operation. This equation can be used to describe a
number of general relationships. However, when it is incorporated
into equation 10 or 11, nonsensical values of W are usually
generated at low values of /. It can be shown that:
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and thus, for equation 10:
173

lim [ 3kl Gesld _V[3k

-0 \dwIC ") s |\4rcC

Thus, a constant nonzero value of W is calculated when [
approaches zero only if b = 1. Such an exact value of b would be
rare in a regression of real data. It should further be pointed out
that if 5 = 0.67, the calculated limit for W as I approaches zero is
infinity. Thus the “rhizoplane™ situation generates an infinitely
large value for the width of the rhizosphere. If equations 10 and 11
are valid, then the existence of this paradox would tend either to
support criticisms (3,5,6,8) of the theory of Baker et al (1,2), or to
indicate that the calculation of rhizosphere size for a rhizoplane
situation is inherently impossible, and results in nonsense values of
rhizosphere size. In either case, the use of equation I3 in
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rhizosphere size calculations would be inappropriate.

Vanderplank (8) proposed an equation based on the Poisson
distribution as an alternative to that of Baker et al (1,2). This
equation includes parameters representing the number P and
susceptibility 4 of potential infection sites:

HIM=(PIM) (1= 1) . (14)

Equations of this form can be easily incorporated into equations 11
and 12. As Japproaches zero, it can be shown that the ratio of H/ M
to [/ approaches a constant:

. —_ Al
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The use of equation 14 thus seems to be more appropriate than the
use of equation 3. However, for certain sets of data, finite values of
Pand A cannot be determined. This occurs when the data describe
a line which curves upward. This problem could be overcome by
fitting a positive exponential equation; however, such an equation
would not have the same theoretical relation to a biological
situation that equation 14 does.

Several other regression equations could be fitted to /-infection
data. In some situations it may be appropriate that a quadratic
equation with no intercept be fitted:

HM=k I+k I

This equation does not correspond to a particular conceptual
model, and should not be used to extrapolate beyond the range of
the data that has been fitted. However, it can be used to describe a

number of types of relationships and to test for a linear realtionship
between H/M and I by determining if k: is significantly different
from zero, and has a finite limit as J approaches zero:

lim ki I+k P
§ R e
-0 I
It is hoped that the availability of the equations presented in this
paper will both encourage the calculation of rhizosphere and

spermosphere sizes, and stimulate the development of related
theories.
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