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ABSTRACT

Berger, R. D. 1981. Comparison of the Gompertz and logistic equations to describe plant disease progress. Phytopathology 71:716-719.

The Gompertz transformation effectively linearized 113 disease progress
curves of nine pathosystems. The Gompertz model avoided the
curvilinearity commonly associated with logistically transformed values.
Estimation of epidemic rate, projection of future disease severity, and

Additional key words: simple linear regression, curve fitting, epidemic analysis.

determination of initial disease were more accurate with the Gompertz than
with the logistic model. Since many pathosystems have asymmetrical
disease progress curves, transformations other than the logistic may be
more appropriate to estimate epidemic parameters.

Thorough description and accurate analysis of the dynamic
process of plant disease increase in time is needed to compare
epidemics. Typically, the sigmoidal progress curves of compound
interest diseases are linearized with the logistic transformation to
aid in interpretation (1,10,17,21,24,27). The daily increase of
disease is commonly skewed to the right so the logistic equation for
linearization may be inadequate or inappropriate. Nevertheless,
research workers continue to use it despite the caution urged by
Kranz (18): “Do not apply a transformation model blindly to any
disease, check suitability first by verification of the underlying
distribution.” If the logistic transformation is used for a skewed
distribution of values, erroneous interpretation of the epidemic
parameters may result. Alternate transformations for growth
curves are available (17). Disease progress curves of apple scab
were fit poorly with the logistic model, but Analytis (1) obtained
better fits with the Bertalanffy, Gompertz, and Mitscherlich
transformations. Berger and Mishoe (12) also obtained good
statistical fit for these three transformations applied to progress
curves of several plant pathosystems. Plaut (23) obtained better
statistical fit with the Gompertz model compared to the logistic for
progress curves of several plant diseases. Griggs et al (15) applied
polynomial curve fitting to compare epidemics of Cronartium
Sfusiforme but this procedure is cumbersome (23). Another
transformation that can be used to describe disease progress is the
Weibull probability density function. One of the advantages of the
Weibull model is its flexibility (22).

In this paper, I report an extension of the utility of the Gompertz
transformation in analysis of plant disease progress curves. An
abstract of this work has been published (11).

DESCRIPTIONS OF THE MODELS

The logistic model. As a population approaches its uppermost
limit, the growth is slowed by the feedback information of limits on
the system. Verhulst (as cited in references 5 and 17) used this feed-
back in a population growth model that is now termed the logistic
model. The logistic model equation for plant disease progress is

y=1/(1+exp(—[a+r]) (D

in which y = disease proportion in the range 0 <y <1.,a =logit (o),
r=rate, and ¢=time. The logistic model equation has also been
described (21) as y=1/(1+b X exp (—rt)) in which b=(ymax/yo)— 1.
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The transformation equation is:
logit (») = In (y/ (1=y)). (2)

The integrated logistic curve is sigmoid and symmetrical about its
central point of inflection (Fig. 1). A plot of the derivative is the
bell-shaped curve of normal distribution (Fig. 2). When the daily
increase of disease has a skewed distribution, the transformed
values (logits) are nonlinear. The logistically transformed disease
progress curves are frequently characterized by steep slopes at
y<~0.05, linearization for the range ~0.05 <y <{~0.6, and values
that fall below the general slopes when y > ~0.6. Berger (9,10) drew
attention to the rapid initial increase of logistically transformed
curves and Zadoks (26) noted the common occurrence of values
below the line at upper levels of y. Commonly, research workers
arbitrarily draw an eye-fitted line through the plotted values or use
simple linear regression techniques to fit the line (23). Both y,and y,
(y at any future time) are likely to be overestimated by the fitted
logistic line through the skewed distribution of values (Fig. 3).
The Gompertz model. The British mathematician, B. Gompertz,
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Fig. 1. Sigmoid curves from simulations with two growth models. Both
epidemics initialized with »,=0.0004. The rates were k=0.2 for the
Gompertz and r=0.325 for the logistic models.



derived this model to develop actuarial tables (5). In the model’s
original form [y = exp(—B X exp (kr))] Gompertz was concerned
with decreasing numbers (of survivors). The change of sign for the
rate parameter (k) changed the equation into a model for increasing
growth

y = exp (—BXexp (—k)). (3)

Gompertz’ growth model frequently has been used by ecologists
to explain biological phenomena (5). The integrated curve is
sigmoid but it is asymmetrical about its point of inflection (Fig. 1).
The plot of the derivative is noticeably skewed to the right (Fig. 2).
The transformation equation is

Y=—In(~In (»); (4)

Y is hereafter called “gompit (y).”
The B parameter is a position parameter; ie, it positions the
origin of the transformed line onto the vertical axis at time /=0. The

B parameter can be calculated by rearrangement of equation 3 and
solution for B:

B=—1n (yo); exp(—kr) = | at 1=0. (5)

The B parameter also can be calculated from any y value if k is
known, also from rearrangement of equation 3:

B=—In (y)/exp (—kt); 1<0. (6)
Alternatively, the B parameter can be obtained graphically from

the line fitted through the gompit (y) values and the intercept with
the vertical axis at r=0 by

B = exp (—gompit (yo)). ()

When disease progress curves are fitted to the Gompertz model
in statistical curve fitting programs (4), an estimate of the B
parameter is generated. The initial disease (y) can then be
calculated from this generated estimate of B as the inverse of
equation 5:

yo=exp (~B). @®)

The origin of the curve of transformed values can be fixed on the
vertical axis at time /=0 by the inverse of equation 7:

gompit(yo)=—"In(B). (9

Comparison of logistic and Gompertz models. The k parameter
of Gompertz’ model is the rate parameter, which corresponds to the
apparent infection rate (r) of the logistic equation as used by
Vanderplank (24).

The k values are calculated similarly to the r values by the
two-point method; ie, for the logistic model:
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Fig. 2. The daily growth (the derivative, dy/d¢) for two growth models. The
simulation parameters were yo=0.0004; rates k=0.2 for the Gompertz and
r=0.325 for logistic models.

r=(logit(y2)—logit(y1))/ (t2—11); (10)
and for the Gompertz model:
k=(gompit(y>)—gompit(y1))/ (12— 1). (11)

For both models, the rate parameters can also be obtained by the
slope values of the simple linear regression of the transformed
disease proportions over time.

Plots of the derivatives of both equations can be superimposed
for comparative purposes. The plot of the logistic derivative must
be shifted to the left (earlier in time) to make the points of inflection
of both curves coincide. The two curves are then reasonably similar
in shape for a period of time (Fig. 4). Thus, both transformations
effectively linearize values in the range of ~0.05 <y <~0.6 for
both symmetrical and asymmetrical populations. The fit with the
logistic equation is poorer than that of the Gompertz equation for
values outside that range in the typical asymmetrical disease
progress curves.

APPLICATION OF MODELS

Comparisons of epidemics. For the logistic model, tables of logits
were available in the literature (24,27). For the Gompertz model, a
table of gompits (Table 1) was prepared with the appropriate
transformation (equation 4) for disease proportions in the range
0.01<y<<0.99. The two models were compared by determining
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Fig. 3. Logistic transformation of an asymmetric sigmoid growth curve.
The Gompertz transformation for these values would be a straight line with
the correlation coefficient of 1.0 and k=0.05. The projections for yo and y,
with logistic model overestimate the real values.
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Fig. 4. The derivatives for two growth models superimposed with common
points of inflection at day 12. The simulation parameters were yo=0.0004;
k=0.2 (Gompertz model) and r=0.325 (logistic model).
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goodness of fit for over 100 disease progress curves. For the
Puccinia recondita-wheat pathosystem, 80 epidemic curves
were obtained from a fungicide interval experiment conducted in
Wageningen, The Netherlands, in 1974 (R. D. Berger and J. C.
Zadoks, unpublished). To show the broad applicability of the
Gompertz model, additional disease progress curves were selected
from the literature (Table 2).

The disease proportions for all curves were treated with the
appropriate transformations (equations 2and 4). The slope values,
intercepts, and tests of goodness of fit were determined by simple
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Fig. 5. Time required to reach y=0.5 from different levels of yo when growth
increases according to the Gompertz model. The delay in time (Ar) to reach
y=0.5from reduction in yo can be found by comparing lines across any rate
in the range 0<<k<<0.4,

linear regression. Alternatively, the least squares program for
nonlinear models (NLIN procedure of the Statistical Analysis
System [SAS] [4]) was used to obtain parameter estimates and
goodness of fit for both the logistic and Gompertz models.
Computing was done utilizing the facilities of the Northeast
Regional Data Center of the State University System of Florida in
Gainesville. The NLIN procedure has optimum estimation of
parameters only when numerous (n>>20) observations are available
for analysis (4). The maximum number of y values available for a
pathosystem was 17; the average number was 12.

“Model” epidemics were generated by insertion of either model
(equation | or 3) into a computer program using the CSMP
(Continuous System Modeling Program) language. Plots of
continuous growth, the derivatives, and transformed values were
easily obtained for any of the desired levels for parameters yo, k,
and r.

The Gompertz model provided a better statistical fit than did the
logistic model for all 113 disease progress curves of the nine
pathosystems. In general, the fits were slightly better for both
models with the simple linear regression technique (unpublished).
Forall curves, curvilinearity existed in the logistically transformed
values. That is, the individual residual sums of squares were
negative for early and late disease values and positive for values in
the middle of the transformed curve. With the Gompertz model,
this pattern of same signs for consecutive residual sums of squares
was largely avoided, thus giving evidence for more balanced fit.

Disease progress following simulated sanitation. The time
needed to reach a specific disease severity is sometimes used as a
parameter to compare epidemics. The value, y=0.5, was arbitrarily
selected to compare model epidemics begun at different initial
disease severities and over a range of epidemic rates (Fig. 5). Many
leaf spot diseases have a Gompertz rate of A<<0.1; the average rate

TABLE 1. Plant disease proportions expressed as “gompits” (the Gompertz transformation)"

Hundredths
Tenths 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 —-1.527 —1.364 —1.255 —1.169 —1.097 —1.034 —0.978 —-0.927 —0.879
0.1 —0.834 —0.792 —0.752 —0.713 —0.676 —0.640 =0.606 —0.572 —0.539 —0.507
0.2 =0.476 —0.445 -0.415 —0.385 —0.356 —0.327 —0.298 —0.270 —0.241 -0.213
0.3 —0.186 —0.158 —0.131 —0.103 —0.076 —0.049 —-0.021 +0.006 +0.033 +0.060
0.4 +0.087 0.115 0.142 0.170 0.197 0.225 0.253 0.281 0.309 0.338
0.5 0.367 0.395 0.425 0.454 0.484 0.514 0.545 0.576 0.607 0.639
0.6 0.672 0.705 0.738 0.772 0.807 0.842 0.878 0915 0.953 0.991
0.7 1.031 1.072 1.113 1.156 1.200 1.246 1.293 1.342 1.392 1.445
0.8 1.500 1.557 1.617 1.680 1.747 1.817 1.892 1.971 2.057 2.150
0.9 2.250 2.361 2.484 2.623 2,783 2.970 3.199 3.491 3.902 4.600
“The transformation is gompit (¥) = —In (~In (y)) in which y=disease proportion in the range 0<y<1.
"To find y for gompits not in the table use y = exp (—exp (—gompit (y))).
TABLE 2. Comparisons of the statistical parameters of 113 epidemics representing nine pathosystems fitted to two growth models’
Logistic model Gompertz model
No. of " =
Pathosystem Source curves N Rate’ Sy r Rate Sy« r
Puccinia recondita—wheat 80 14 0.07-0.12  0.02-0.16  0.843-0.976 0.025-0.046 0.01-0.06  0.969-0.991
Helminthosporium maydis—corn (3) 3. 7 0.10-0.11 0.05-0.06  0.954-0.975 0.051-0.058 0.04-0.05 0.980-0.988
Ceratocystis ulmi—elm (25) 1 13 0.04 0.01 0.974 0.008 <0.01 0.992
Ceratocystis ulmi—elm (20) 1 17 0.05 0.05 0.857 0.009 0.028 0.982
Puccinia striiformis—wheat (26) 1 5 0.11 0.04 0.969 0.042 0.02 0.983
Venturia inaequalis—apple n | 10 0.19 0.01 0.580 0.018 <0.01 0.861
Uromyces sp.—yucca (19) 3 5 0.05-0.06 0.01 0.841-0.960 0.008-0.009 <0.01 0.972-0.980
Erysiphe graminis—wheat (14) 4 5 0.18-0.24 0.01 0.757-0.915 0.034-0.042 <0.01 0.983-0.995
Cercospora apii—celery (7) 7 5 0.10-0.11 0.08 0.660-0.903 0.024-0.03  0.02-0.09 0.969-0.984
Cercospora apii—celery (8) 11 6 0.07-0.15 0.01-0.11 0.886-0.928 0.015-0.057 <0.01 0.986-0.997
Helminthosporium turcicum—corn  (6) 1 8 0.13 0.01 0.921 0.03 <0.01 0.992

*Disease progress curves fitted using the NLIN procedure of SAS. The model equations were y = 1/(1 + exp (—[a + rf])) for the logistic and
J = exp (—Bexp (—kr1)) for the Gompertz.
"Number of observations per curve.

¢ Rate for the logistic model is the apparent infection rate (r) of Vanderplank (24) and for the Gompert? model it is the parameter k.
U5, is the standard error of the estimate, a measure of the variability of y values about the regression line, calculated as (residual sums of squares/(N-2))"*

(reference 13).

“Correlation coefficients.
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for the 113 curves in Table 2 was k=0.028. The anticipated benefit
from sanitation measures could alter the B parameter from, eg, 5
(1=0.0067) to 10 (»=0.000045). The likely delay in epidemic time
to reach y=0.5 then would be about 25 days (at £=0.028). It would
take drastic sanitation measures to gain more reduction in initial
disease and achieve a corresponding delay in time to reach y=0.5.
Sanitation measures are relatively ineffective at delaying fast-
moving epidemics (k=>0.1).

If epidemics were to proceed logistically, the delay in time would
be much longer than with the Gompertz model. With
Vanderplank’s (24) sanitation ratio, 50 days delay would be
expected with the above sanitation values when r=0.1 (the average r
value from Table 2). In actual epidemics, it is unlikely that this long
delay would occur (10,23); ie, the epidemics proceed faster than
projected by the logistic model.

DISCUSSION

The linearization of disease progress curves is essential to
determine epidemic speed, to project future disease, and to estimate
initial disease. The logistic transformation has severe limitations
for all three desired parameters for the many disease progress
curves that are asymmetrical. The Gompertz model was superior to
the logistic model in linearizing the 113 selected disease curves,
Analytis (2) and Hau and Kranz (16) also used the Gompertz and
other models to linearize disease progress curves. They stressed
using the correct model to make the linearization, if a
transformation was indeed necessary. Symmetrical curves may be
effectively linearized by the logistic equation. Therefore, it seems
wise to heed Kranz' (18) caution to examine the underlying
distribution of values before selecting a transformation. If the
inappropriate model is chosen, inaccurate estimates of the
epidemic parameters result, In this vein, the curves of Fried et al
(Fig. 3 in reference 14) are of particular interest. They used the
intercept of the simple linear regression of logit values as their
estimate of yo. The Gompertz model provided estimates of yo that
were 10- to-100-fold lower than the logistic. It may be more
appropriate to estimate yo with the logistic model by extending a
curve to the y axis that superinscribes the initial logit values as in
my Fig. 3. Fried et al (14) also claimed a better fit of the logistic over
other models (including Gompertz') but provided no evidence to
support this judgement. In my analysis of the same values, the
Gompertz model had a slightly better statistical fit for all four
curves.

The statistical techniques used to estimate parameters must be
employed with some caution (13,23). Consideration must be given
to patterns of values, particularly to outliers as these contribute
excessively to the correlation coefficients (Fig. 6.3 of reference 13).
Additionally, the range of observed values should not be restricted
(Fig. 6.6 of reference 13) as this will also affect the correlation
coefficient.

Both the simple linear regression and nonlinear curve-fitting
techniques have optimum estimation of parameters when many
(7n>>20) values are available. Since numerous values aid in
interpretation of the disease progress curves, researchers should be
encouraged to begin estimation early in the epidemic and continue
to make estimates at frequent intervals. In this way, more reliable
estimates of the epidemic parameters will be obtained.

LITERATURE CITED

I. Analytis, S. 1973, Zur Methodik der Analyse von Epidemien dargestellt
am Apflelschorf ( Venturia inaequalis (Cooke) Aderh.). Acta Phytomed.
1:1-76.

19.

20.

21

22

23

24,

25.

26.

27.

. Analytis, S.

. Hau, B.,

1979, Die transformation von Befallswerten in der
quantitativen Phytopathologie. 1l. Das Linearisiecren von
Befallskurven. Phytopathol. Z. 96:156-171.

. Ayers. J. D.. Nelson, R. R, Castor, L. L., and Blanco, M. H. 1976.

Yield losses in corn caused by Helminthosporium maydis Race T. Plant
Dis. Rep. 60:331-335.

. Barr, A. )., Goodnight, J. H., Sall, J. P., and Helwig, J. T. 1976. A

User's Guide to SAS 76. SAS Institute Inc., Raleigh, NC. 329 pp.

. Batschelet, E. 1976. Introduction to Mathematics for Life Scientists.

Springer. New York. 643 pp.

. Berger, R. D. 1973. Helminthosporium turcicum lesion numbers

related to numbers of trapped spores and fungicide sprays.
Phytopathology 63:930-933.

. Berger, R. D. 1973. Infection rates of Cercospora apii in mixed

populations of susceptible and tolerant celery. Phytopathology
63:1161-1165.

. Berger, R. D. 1975, Disease incidence and infection rates of Cercospora

apii in plant spacing plots. Phytopathology 65:485-487.

. Berger, R. D. 1975, Rapid disease progress in early epidemic stages.

(Abstr.) Proc. Am. Phytopathol. Soc. 2:35.

. Berger. R. D. 1977. Application of epidemiological principles to

achieve plant disease control. Annu. Rev. Phytopathol. 15:165-183.

. Berger, R. D. 1981. The Gompertz transformation-—more appropriate

than the logistic to describe disease progress. (Abstr.) Phytopathology
71:203.

. Berger, R. D., and Mishoe, J. W. 1976. CSMP simulation of several

growth functions to describe epidemic progress. (Abstr.) Proc. Am.
Phytopathol. Soc. 3:217.

. Edwards, A. L. 1976. An Introduction to Linear Regression and

Correlation. W. H. Freeman, San Francisco. 213 pp.

. Fried, P. M., MacKenzie, D. R., and Nelson, R, R. 1979. Disease

progress curves of Erysiphe graminis {. sp. tritici on Chancellor wheat
and four multilines. Phytopathol. Z. 95:151-166.

. Griggs. M. M., Nance, W. L., and Dinus, R. J. 1978. Analysis and

comparison of fusiform rust disease progress curves for five slash pine
families. Phytopathology 68:1631-1636. '

and Kranz, J. 1977. Ein Vergleich verschiedener
transformationen von Befallskurven. Phytopathol. Z. 88:53-68.

. Jowett, D., Browning, J. A.,and Haning, B. C. 1974. Nonlinear discase

progress curves. Pages 78114 in: J. Kranz, ed. Epidemics of Plant
Diseases: Mathematical Analysis and Modeling. Springer, New York.
170 pp.

. Kranz, J. 1974, The role and scope of mathematical analysis and

modeling in epidemiology. Pages 7-54 in: J. Kranz. ed. Epidemics of
Plant Diseases: Mathematical Analysis and Modeling. Springer, New
York. 170 pp.

Larios, J. F.. and Moreno, R. A. 1977. Epidemiologia de algunas
enfermedades foliares de la yuca en diferentes sistemas de cultivo. 11
Roya y muerte descendente. Turrialba 27:151-156.

Miller, H. C., Silverborg, S. B., and Campana. R. J. 1969. Dutch elm
disease: relation of spread and intensification to control by sanitation in
Syracuse, New York. Plant Dis. Rep. 53:551-555.

Nair, K. R. 1964, The fitting of growth curves. Pages 119-132 in: O.
Kempthorne, T. A. Bancroft, J. W. Gowen, and J. L. Lush, eds.
Statistics and Mathematics in Biology. Halner, New York. 632 pp.
Pennypacker, S. P.. Knoble, H. D.. Antle, C. E.. and Madden, L. V.
1980. A flexible model for studying plant disease progression,
Phytopathology 70:232-235.

Plaut, J. L. 1980. Epidemic progress of three pathosystems as affected
by initial disease severity. M.S. thesis, Univ. of Florida, Gainesville. 106

Pp-

Vanderplank, J. E. 1963. Plant Diseases: Epidemics and Control.
Academic Press, New York. 349 pp.

Van Sickle, G. A., and Sterner, T. E. 1976. Sanitation: a practical
protection against Dutch elm disease in Fredericton, New Brunswick.
Plant Dis. Rep. 60:336-338.

Zadoks, J. C. 1961. Yellow rust on wheat. studies in epidemiology and
physiologic specialization. Tidschr. Plantenziekten 67:69-256.
Zadoks, ). C..and Schein, R. D. 1979, Epidemiology and Plant Disease
Management. Oxford, New York. 427 pp.

Vol. 71, No. 7, 1981 719



