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Models relating inoculum density of soilborne pathogens to
plant disease (7-9) have been “condemned™ by Vanderplank (74),
judged “not satisfactory” by Gilligan (29), deemed of “questionable
validity” by Grogan et al (33), and declared mathematically invalid
by Leonard (44). Without substantive discussion of these
criticisms, the situation, like friction, is likely to generate more heat
than progress.

Therefore, we contribute this rebuttal with a view to establishing:
what the commotion is all about, how the models have been
misapplied and misinterpreted, the logical biological bases for their
construction, the probity of the basic mathematics, and the
documentation for the experimental tests of their validity.

The roots of the controversy. To achieve perspective, we will
review briefly the development of the mathematical models (7-9)
designed to represent disease (D), which can be measured either as
disease incidence (DI) or severity, as a function of inoculum density
(ID), especially for models developed for rhizoplane and
rhizosphere phenomena associated with fixed infection courts.
Apparently they are at the heart of the controversy.

Inanexperimentin whichan ID-D curve is developed, disease is
plotted as a function of the amount of inoculum present in the
system. Host and environmental parameters are held constant (the
way differences in these parameters affect the relationships is
treated later). The idealized form of the curve is presented in Fig.
1A, although all of its parts may not be manifested in every host-
pathogen system. The models are designed to describe only that
part of the curve labeled “true logarithmic scale.” Certain
conclusions regarding the role of synergism may be possible but the
models do not function on the transitional or plateau portions (7-9)
of the curves.

The assumptions underlying the models (9) are (i) that
prepenetration processes conform to the known ecological
relationships for plant pathogens in soil (eg, the operation of soil
fungistasis); (ii) that there is a random distribution of inoculum and
occurrence of events (infection); (iii) that the probability of
infection occurring from units of inoculum is <1 although one
propagule is capable of infecting and inducing symptoms; (iv) that
all members of the host population are equally (genetically)
susceptible and disease ratings are taken at the same time after
inoculation; and (v) that infection results in symptom expression by
the host (disease is not masked).

Consider a fixed infection court in soil, such as a hypocotyl or
seed, subjected to increasing amounts of inoculum. If each
propagule under the influence of the host in the rhizosphere
germinates perfectly, one propagule introduced into this volume
germinates, penetrates, and induces one infection (Fig. 2A). Two
propagules induce two infections and so on. If this relationship is
plotted as in Fig. 2B, line a, a straight line is generated with a slope
value of one which indicates one infection per inoculum unit.
Obviously, this perfect system does not reflect reality; inoculum is
not 100% efficient. Assuming 50% infection efficiency of the
inoculum, two propagules would be required to produce one
infection, four to produce two, etc., as plotted in Fig. 2B, line b. With
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10% efficiency, line ¢ would be generated as in Fig. 2B. Thus,
ID-infection relationships are affected by differences in efficiency
of inoculum. When plotted, these generate families of straight lines
with different slope values that depend upon efficiency values.

Data collected from an experiment reflecting this situation may
be interesting, but will have little biological or quantitative
meaning. Efficiencies are an unknown quantity for almost all
pathogens and, without them, the volume of the rhizosphere and
the quantity of inoculum participating in infection cannot be
calculated. Even so, the family of straight lines in Fig, 2B,
transformed to log infections-log ID results in a family of lines with
different positions or intercepts, all with slope values of I (Fig. 2C).
This suggests that a research worker can do an ID-D experiment
involving a particular soilborne host-pathogen system and infer
that the pathogen has activity (leading to infections) in the
rhizosphere if the slope value of the relationship between log
infections and log ID is near I—a conclusion that does have
biological meaning.

What if propagules are distributed in the three-dimensional
volume of soil, but only those propagules touching the surface of
the infection court can germinate, penetrate, and infect? As
increasing amounts of inoculum are applied to the three-
dimensional system, the question that arises is: what proportion of
these units touch the rhizoplane? As evidenced by Leonard’s letter
(45), there is more than one approach to the problem, but the
correct solution depends upon proper concepts and assumptions
employed in constructing the model. In modeling this relationship,
we followed the methods employed in the mathematics of packings
and solids. The number of propagules touching the rhizoplane per
unit area was considered to be inversely proportional to the square
of the distance between them (9). The distance between propagules
as a function of inoculum density is not a straight line as might be
assumed; ninium ne crede colori (Vergil). McCoy and Powelson
(49) demonstrated that this relationship was a curve. Thus, the
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Fig. 1. Idealized relationships of inoculum density-disease interactions. A,
Complexities that may be involved in the curve. The synergistic slope may
only be present in certain systems and the normal distribution tail is
hypothesized, but has not been demonstrated conclusively with
experimentation. While 100% disease is indicated on the ordinate, infection
sites may become limiting before this level is reached in some systems. B,
Application of the semilog transformation which corrects for multiple
infections to the ascending portion of the curve in A.
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slope of the curved line (Fig. 2D) resulting when the number of
propagules touching the rhizoplane is plotted against inoculum
density at any point is (9):

2k
slope value = ——=
3(ID)
in which k is a constant. When log infections (propagules on the
rhizoplane penetrating and infecting the host) are plotted as a
function of the log 1D, the result is a straight line with a slope value
of 0.67 (Fig. 2E). This slope value also is predicted for disease
systems involving moving infection courts; in these, rhizosphere-
rhizoplane relationships are not considered; this will be detailed
later.

Note that the ID-infection (nontransformed) relationship is a
straight line when there is a rhizosphere relationship (Fig. 2B); the
plotted relationship is a curve when successful infections result only
from propagules touching the rhizoplane (Fig. 2D). This is the
heart of the controversy. Grogan et al (33,34) assume the ID-
infection relationship to be always a straight line. Leonard (45)
contends that the mathematics generating the curved line,
interpreted as a rhizoplane relationship, are faulty. Gilligan’s (29)
equations 2 and 5 for both the rhizoplane and spermoplane
generate straight lines for infections (“hits”) as a function of ID.

It must be emphasized again that the log-log transformations are
modeled for infections, not disease. Practically all experiments give
host response data in terms of disease incidence or severity. Thus,
the multiple infection correction (30) of the form In 1/(1-y), with y
being disease incidence (11) or severity per unit (35), is used for this

parameter (Fig. 1B).

Whatever slope values are generated, different environmental or
host (susceptibility) parameters applied to each of the ID-infection
relationships alter the slope values of the individual curves or
straight lines just as does propagule efficiency in Fig. 2B. If log
ID-log infections are plotted from these, the influence of the
parameters of environment and/ or host are reflected in each ID-D
relationship and parallel straight lines are generated as in Fig. 2C.
The positions of these lines reflect the impact of the environmental
and/ or host variables and thus have a relative value in terms of 1D
per unit of infection which is useful in quantitative analysis.
Published examples of this kind are available (12,13,35,37,41,60,
68,78). These variables, thus, reflect changes in position rather than
slope values in most cases; however, with appropriate
manipulation of the soil environment, a spermosphere influence
may be reduced to a spermoplane influence which reduces the slope
value for 1 to near 0.67 (60).

Is there a rhizoplane? Grogan et al (34) suggest that convincing
biological evidence has not been presented to demonstrate the
existence of a rhizoplane effect in host-pathogen interactions. They
reason that “in all known cases, fungus propagules can bridge a
finite gap by some mechanism such as the production of a germ
tube or by motility.”

Clark (19,20) coined the term “rhizoplane™ as a result of his
research indicating that the bulk of the bacterial rhizosphere
population of cotton plants was present near the root surface. This
conceptualization was confirmed by many researchers, including
Starkey (67) and Linford (46), from both cultural data and direct
observation. Can this be true also for some fungi?
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Fig. 2. Diagrammatic representation of the basic biological and mathematical relationships involved in models of rhizosphere and rhizoplane relationships.
A, Section of a subsurface organ of a host in which propagules in the rhizosphere germinate, penetrate, and infect in a “perfectly” efficient system. B, The
relationship in A transferred graphically to line a and the graphic results when 50% (line b) and 10% (line c) efficiencies are incorporated in the graph. C,
Transformation of lines a, b, and ¢ in B to log-log values resulting in three parallel straight lines all with a slope value of 1 log inoculum density unit per log
infection unit. D, Graphic relationship in which inoculum density (in a volume of soil) increases and only those propagules touching the plane of the host
surface are capable of germinating, penetrating, and infecting. E, Transformation of the curve in D to log-log values resulting in a straight line with a slope

value of 0.67 log infection unit per log inoculum density unit.
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There is a perennial shortage of available nutrients or energy
sources in soil (21) and propagules of pathogenic fungi usually do
not germinate in soil unless provided with some external nutritive
stimulus (47). For host-pathogen relationships, this stimulus is
provided by exudations from a plant organ in the vicinity of the
propagules (61). Thus, propagules have been observed germinating
at distances up to 20 mm from host organs (eg, 20,22,23,55,
62,63,66). No rhizosphere effect, however, has been found in other
systems in which soilborne pathogens are involved (eg, 26,54,65).
In the examples of research cited above, stimulation of germination
at relatively long distances from host substrates is observed most
frequently near plant organs that are rich in exudates such as seeds,
although environmental factors, such as soil matric potential (eg,
66), also influence the extent of the effect. In contrast, other
organs such as stems (below the surface of the soil) or roots exude
nutrients to a lesser extent and, indeed, none may be detected on
some plant surfaces (61). In such cases germination should occur
only at or very near the surface and Griffin (31) concludes, after
precise experimentation, that germination of Fusarium oxysporum
chlamydospores in the rhizosphere of young peanut plants is
primarily a rhizoplane effect. Even less germination was detected in
the same system for conidia of Aspergillus flavus, because these
require an exogenous source of nutrients to germinate even in pure
culture (32). Thus, from observations of germination alone, there is
evidence that only those propagules that touch the plant surface
participate in the subsequent infection process in some systems.

What about host-pathogen systems in which germination is
observed at a distance? Cook and Schroth (23) have documented
the vicissitudes that may affect the germinating propagule, which
may be lysed in the rich substrates surrounding a seed. Baker
and Cook (6, page 192) state: “As the lag period for growth of the
microorganisms passes, and as cell division and nutrient utilization
accelerate, the lowest nutrient concentrations disappear, the
concentration gradient away from the source deepens, and the most
distant cells from the source are left without nutrients. Withina few
hours only those cells in actual contact with the source will receive
sufficient nutrients for continued growth.”

The considerations above involve only germination. A plant
pathogen must not only germinate, but it also must breach the host
barrier. Obviously, this host-pathogen interaction requires more
energy (eg, 70,72) than does the relatively simple process of
germination, especially in an intact infection court. Cook and
Snyder (24) warn “that caution should be exercised in attempting to
correlate a high degree of spore germination around underground
plant parts with subsequent disease development. Spore
germination is only the first step in the sequence of events leading to
infection...if not lysed...the germlings in the presence of a host plant
may not be able to infect because of inadequate nutrients for
pathogenesis.”

Efficiency must be taken into consideration in any attempt to
model ID-D relationships. One method of measuring efficiency is
to determine the probability of success in infection from single
spores (7, page 1283). Wastie (77) reported 13% success in single
conidium inoculation on broad bean leaves for Botrytis fabae and
0.9% for B. cinerea. This was an experimental laboratory system
with foliage pathogens that encounter less antagonism on the leaf
surface than do soilborne fungi. Thus, the conclusion is inescapable
that even propagules touching the rhizoplane, with all of the
advantages of being served first with nutrients and escaping much
of the antagonism present at greater distances from the host
surface, are not 100% successful in initiating infection. Although
there are no comparable studies involving soilborne pathogens
reported, Griffin (personal communication) is accumulating data
that suggest a 16.4% efficiency for microsclerotia of
Cylindrocladium crotalariae in the colonization of peanut roots,

From the foregoing, we suggest that convincing biological
evidence has been presented that demonstrates the existence of
host-pathogen combinations that have a rhizoplane association.
This conclusion at least permits the construction of models that
hypothetically could describe such associations.

Correct applications of transformations. An example of
misapplication of transformations and inappropriate use of models

is found in a paper by Grogan et al (33). They determined the
incidence of Verticillium wilt in tomato fields in the Sacramento
and San Joaquin valleys of California. Ten plants were assayed in
each of 30 sites from each field. The inoculum densities of
Verticillium dahliae were determined from soil samples collected
from each site. Subsequently, the data originating from plots in
which less than 100% disease incidence occurred was illustrated
graphically as an ID-D curve (Fig. | A in reference 33). The total
number of these data points was five, one of which included a plot
with a disease incidence of 98%: this is a tenuous value for use in
transformations aimed at correcting for multiple infections (eg,
7,11,25).

The first question that arises is whether the data collected can be
legitimately organized into an ID-D curve (Fig. 1). The
relationship between inoculum density and disease holds only when
other factorsare held constant. When 46 commercial tomato fields
were surveyed in two valleys (33), it is not likely that conditions
were constant among the sampled sites.

Environment profoundly affects symptom expression in
vascular wilt diseases (10,53). For example, the concentration of
nitrogen and potassium in soil affected the incidence of disease
caused by four Verticillium vascular-wilt pathogens (1). Again,
Grogan is the coauthor of a paper (4) in which copper-induced soil
fungistasis was reported to influence incidence of Verticillium wilt
in the field. If these factors are kept in mind, it is apparent that the
justification for using such diversely collected data points by stating
that “environmental factors usually are not sufficiently limiting to
prevent the common occurrence of 100% Verticillium-diseased
plants in California fields” (33) is irrelevant or is of questionable
value for fulfilling assumption v (above). The position of data
points collected by this process, thus, may be profoundly
influenced by environmental and/or cultural practices and
regression analyses applied to such systems are not valid.

The next considerationinapplying data toan ID-D relationship
is that of determining statistical prerequisites that properly
describe the entities and events of populations as they occurin time
or space to conform to assumption ii. Kranz (48) states this inherent
constraint simply: “...do not apply a transformation model blindly
to any disease, check suitability first by verification of the
underlying distribution.” Early on, then, distribution of inoculum
and host disease expression must be assessed. While random
distribution of inoculum in cultivated fields was suggested (52),
there is no overwhelming evidence that such a spatial distribution
can be assumed. Further, application of the Poisson distribution
(7,25) for determining the relative number of infections resulting
from this inoculum (30) dictates that plants with symptoms also be
randomly distributed within the area sampled (assumption ii). No
test for random distribution of such plants is reported (33), and
indeed, Christensen et al (18) suggest that hosts with symptoms of
Verticillium wilt are not distributed at random in the field.

Further, the limitations of the ID-D relationship in the pure form
dictate that readings for the amount of disease be recorded for
plants of uniform age (assumption iv). In a host population,
expression of symptoms in a single season over time may take the
form of the simple interest increase as suggested by Vanderplank
(75). Apropos of these considerations, Grogan et al (33) state the
“incidence of Verticillium wilt...was determined at the same time as
the soil samples [near the end of the growing season] usually within
the last month of harvest,” which suggests variation in ages of plants
among fields at sampling time, even if they were planted at the same
time. Also, did the soil samples taken at this time necessarily
contain the initial inoculum density that induced disease?

Assumption ivalso dictates uniform varietal susceptibility. Race
l-resistant cultivars were grown, cultivar VF 145-B7879 being the
“most common”(33). This suggests that other race l-resistant cultivars,
potentially with varying responses, also were rated.

These factors alone, involving applicability and underlying
distribution (discussed above), preclude application of the
collected data points (33) to the models. The single variable
influencing host response in an ID-D curve by definition is
inoculum density. Thus, the illustration of data points in Fig. 1 of
Grogan et al (33) more properly should be in the form of a bar
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graph (2) because variables other than ID influence the position of
these points.

After performing regression analysis of the five data points in
their Fig. 1B, Grogan et al (33) assume “a good fit to a straight
line...(r = 0.877)..." and later conclude that *...the 1D-D
relationship, when inoculum is within a limiting range, is
arithmetically linear.” To make the latter conclusion, they cite their
Fig. 1B (which plots data points corrected for multiple infections),
which must mean that ID related to infections (not DI) isa straight
line. With this assumption, they convert the entire straight line
intact to their Fig. 1C and transform, again intact, to their Fig. ID
(which is log infections vs log ID).

Is the assumption of a straight line relationship valid from a
mathematical and/or statistical standpoint? The value of r, as
calculated (by the authors) by the first-order linear regression
equation, is 0.88. The r value, when calculated according to the
second-order linear regression equation which describes a curve, is
0.89. The residual values (mean square) are 0.75 and 0.67,
respectively, which suggests that neither the first- nor second-
order models can be verified. These two alternatives are illustrated
in Fig. 3A.

The valid method of transformation (used by all others in
appropriately related research) is to convert each data point
individually, not collectively. When this is done, the slope value
(log-log) is not 1 as in their Fig. 1D but 1.54 asillustrated in Fig, 3B,
That this value is not near 0.67 (9) is of no concern since, as
established earlier, the five data points do not describe an ID-D
relationship; wide fluctuations in the position of individual data
points, not necessarily correlated with the amount of inoculum, can
oceur.

When Grogan et al (33) convert semilog (8,25) plots (their Fig.
IB) of points with various slope values as straight lines, they
predictably obtain parallel straight lines (their Fig. 1D) when
transformed to log infections—log ID whose slope values are always
1 and whose position is determined by slope values in the semilog
plot. This is the rationale underlying Model 1 (rhizosphere)
described above. Their Fig. 1C and D are comparable to our Fig.
2B and C.

Although we have doubts about the use of a data point witha DI
value of 98%, we have incorporated it into our calculations since
Grogan et al (33) included it. Not only is its multiple infection
correction value suspect, but it should lie on the transitional
portion (Fig. 1) of the ID-DI curve. Grogan et al draw a curve in
Fig. 1A but they also point out that there isa good correlation with
a straight line (r = 0.816) when this point is used in an ID-DI
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Fig. 3. A, The five data points (below 100% disease incidence) used by
Grogan et al (33) for the relationship of inoculum density of Verticillium
dahliae and In (1/[1—y]) (in which y equals disease incidence) plotted by the
computer as best fit for a straight line and a curve. The values of r (the
correlation coefficient) are almost equal so that it is not possible to
determine whether the true relationship is statistically a straight line ora
curve. Residual (mean square) values are 0.75 and 0.67, respectively, also
suggesting that neither the first or second order models can be verified. B,
The values in A converted as individual points with regression analysis to
the log-log transformation.

366 PHYTOPATHOLOGY

relationship. This phenomenon is not typical of other examples
derived from experiments involving ID-DI curves where 1D is the
only dependent variable.

The crooked made straight and correlation coefficients in
epidemiology. Grogan et al (34) question interpretations applied to
linear slope values of DI versus inoculum density in
transformations. They present three curves (their Fig. 1) stating
that “arithmetic plots of most DI-ID data conform to lines A and
B” and that “numerous plots of DI-ID data” conform to line C.

Line A cannot be found in any legitimate 1D-D relationship in
the literature.

Line B, when corrected for multiple infections (in their Fig. 2), is
similar to the curve generated by Petersen (56) for infection foci
resulting from various ID of Puccinia graminis. Vanderplank
shows that such a curve can be interpreted as synergism (60;61;
74, page 91; 75, page 5). The only soilborne pathogen system in
which experimentation suggests the operation of synergism
involves Rhizoctonia solani (7,8,12,13,60,78). Thus, their line B is
not typical of most host-pathogen interactions reported in the
literature.

Line C is the only curve that Grogan et al (34) document with
literature citations and, in these, slope values correlate with those
predicted by the models (35,50,51). In such a relationship, DI at
100% is not reached even though high levels of inoculum are
applied. Another example of this is furnished by Hanounik et al
(37). They induced black rot of peanut with microsclerotia of
Cylindrocladium crotalariae at various inoculum densities. In soil
not treated with a fungicide, disease severity in the resistant cultivar
Spancross only reached 31.5-34.5% at inoculum densities of
1,280-5,120 sclerotia per gram of soil. As pointed out by these
authors and by us (7-9), it may be difficult to determine what
points lie on the log-log portion of the ID-D curve (Fig. 1A);
however, when the four lowest levels of inoculum density are used
in the log-log transformation, the slope value for Spancross is
0.771; for five points, it is 0.691; for six points, it is 0.583 (37, Table
2). These are quite different from the slope value of 1.06 for the
curve presented by Grogan et al (34) in their line C of Fig. 3 whenall
their points are used. Why?

Grogan et al (34) use data points in all transformations in Figs.
2-6for values nearly equivalent to zero ID and zero or 99% disease.
It is not mathematically or logically possible to obtain a multiple
infection value for 100% disease. High values approaching 100%,
while given in tables (eg, 74), may not be reliable (11). Similarly,
there is no logo value for zero, and probit values for zero and 100%
are infinitely near 5 standard deviations from the mean. Use of
such extreme parameters skews curves and relationships to suchan
extent as to render them useless. Forexample, line Bin Groganetal
(34, Fig. 2) suggests the operation of synergism according to the
system of Vanderplank (74,75) explained above. When using the
minimum value for a data point for probits and log ID in Fig. 6,
Grogan et al (34) obtain a slope value of 1.65 (their Table 1) which is
well below >2 which is predicted for synergism by the log-probit
transformation (25,57). When line B is properly transformed with
data points other than log —1 for ID and a minimum probit value of
1.910 (<0.19% disease) for DI, the slope value becomes 3.74 which
suggests the operation of synergism. These skewed values are
evident in all the transformations used by them (34).

Grogan et al (34) do not provide citations for the sources of their
curves. As documented above, it is doubtful whether the curves
were obtained from experiments reported in the literature. Their
curves resemble those provided by Vanderplank (75) in his Fig. 1.7,
except that number of infections rather than the DI is used by him
on the ordinate.

With these factors in mind, it is difficult to pin down precisely the
issues that Grogan et al (34) advance in support of their
condemnations of transformations used in analyses of ID-D curves
in epidemiology (7). The heart of the argument appears to be that
“the apparent linearity...(from use of transformations) is a
mathematical artifact with no intrinsic biological significance.” To
demonstrate this, they apply transformations appropriate for
conversion of ID-D data, such as the semilog, log-probit, and log
infections-log 1D to their apparently phantasmic curves and show



that R? values are equally high when inappropriate
transformations are used (logit and log ID-log D). In other words,
almost any transformation, whether its assumptions are valid or
not, “can stand a lot of abuse from natural systems without
responding badly” (11).

Conversion of parameters and data points to straight lines is a
common practice in epidemiology, but it has no significance itself.
Vanderplank (74), with characteristic syntax, echoes our thinking:
*...it is no part of the argument for the use of log (x/[1-x]) to
suggest that regression lines are usually straight.” Again, Kranz
(43) states that “transformation of data is a well-known procedure
in statistics mainly employed to straighten curves, convert
percentages, and so on...(but) it is not always linearity that
necessitates transformations.” If one applies lack of fit tests to
regression equations, as Wijetunga and Baker (78) did for
Vanderplank’s transformations (74) applied to a disease analogue,
no model may demonstrate a better degree of fit than regression
plots of nontransformed data. As a result of this, we did not reject
Vanderplank’s transformations. Rather, we agree with Waggoner
(76) that in such cases in which the data fit any model, “the logical
course is to choose a differential equation that is both biologically
appealing and simple and then to use it if it fits the
curve...reasonably well.”

It shall be the task of the next section to test whether the models
are “biologically appealing.”

Are the assumptions used in the models valid? Gilligan (29)
questions some of the assumptions of the models reiterating
criticisms of the models listed by Vanderplank (75).

According to Vanderplank (75) “there is no known evidence that
disease/inoculum curves for roots are in any way unique.” To
support this, he states that the ID-D curves generated by Last and
Hamley (44) for lesions induced by Botrytis fabae have a slope
value (log-log) not significantly different from 0.67. Similarly, in
“...Wastie’s [77] experiments with spores of B. cinerea applied to
the surface of leaves of Vicia faba the log-log slope was
approximately 2/3.” The slope value generated by Last and
Hamley (44) is 0.64; those by Wastie (77) are 0.43 ( B. cinerea) and
0.27 (B. fabae). These wide ranges in slope values are predictable.
First, as Vanderplank (75) suggests, slope values in systems
involving both foliage and soilborne pathogens may differ
depending on the location and number of data points used from the
transitional or plateau portions of the ID-D curve. Forapplication
of data to the models, points from the transitional or plateau
portions of the curve are not valid (7-9). Second, slope values for
ID-infection relationships of propagules deposited on a plane
surface (such as a leaf) would be a function of their efficiency in
initiating infection (77, Fig. 2B). These two factors suggest that
slope values of ID-infection curves for foliate pathogens should
vary widely and this is indeed the case. A further defense of the
“condemnation”is found in Vanderplank’s (75) use of relationships
plotting log ID as a function of log lesions. The mathematics of the
models (7-9) dictate plots involving log ID vs log infections (not
lesions or disease). Therefore, these criticisms are based on
misapplications of the elements of the models.

When propagules are thoroughly mixed in the soil, a random
distribution of inoculum occurs. Random distribution also may be
present in cultivated field soils (52). Calculations for construction
of the models assume a tetrahedral arrangement of propagules in
the soil. Is this perfect distribution of inoculum in the models
compatible with the random distribution found in mixed soil or in
the field? The models are based on equations in which the average
distance between propagules as a function of inoculum density is
used (9). Thus, the key question is: how many measurements are
required before the average distance among randomly distributed
propagules can be computed with confidence?

In Fig. 4A, 60 points are placed in an area. The positions of the
points were determined from a table of random numbers. Again,
using this table, points were selected and the distance to the nearest
adjacent point was measured. Kershaw (40) suggested a simple
subjective analysis to determine the effect of the size of a sample on
variation in the value of a mean which has application in this case.
The method consists of increasing the number of samples several

MEAN

times, calculating a new mean each time, and plotting the values
obtained against number of samples taken. The point at which the
mean value ceases to fluctuate is easily determined. In Fig. 4B, the
measurements between the randomly selected pointsin Fig. 4A are
plotted in this way. The mean value is reached in six-to-eight
measurements. Thus, the average distances between propagules
used in the models is valid when hundreds, thousands, millions, and
billions of propagules are randomly distributed in a typical
experiment.

Gilligan (29) suggests that inoculum in our experiments
(12,13,60,78) was not randomly distributed. In all cases, it was
indicated that a twin-shell blender was used to mix the soil. The
manufacturer of the instrument and soil scientists have used
radioactive tracers to determine the distribution of particles mixed
by the instrument. Mixing for under 1 min is required to reach
random distribution.

Another assumption of the models, questioned by Vanderplank
(75)and Gilligan (29), is that propagules are mathematical points in
soil. For modeling purposes, there is no flaw in this assumption.
First, points are used universally by modelers and mathematicians
when the dimensions of the object represented by the points are
small in relation to the volume of containment, The equations,
developed by McCoy and Powelson (49), for determining the
spatial distribution of soilborne propagules can be used to obtaina
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Fig. 4. The validity of using average distance between propagules as a

component in calculations describing natural systems where distribution is
at random. A, Location of 60 points whose positions in a grid was
determined from a table of random numbers. B, Effect of increasing the

number of measurements of distance between adjacent points on the values
of the average distance between propagules according to the method of
Kershaw (40). Relatively stable average values are obtained in six-to-eight
measurements.
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relative idea of the average distance between propagules in relation
to their size.

Observe a period on this page and consider it relative insize toa
chlamydospore 10 um in diameter in soil. Relative to its size, at 250
propagules per gram, the next chlamydospore (period) would be
almost 6 cm across this page. At 3,000 propagules per gram the
distance would be approximately 3.7 cm. Microsclerotia of
Verticillium albo-atrum (250 pm in diameter) would be over | cm
distant from each other at three propagules per gram of soil (5).
Clearly, propagules can be considered as points distributed in soil
in a relative sense. Modelers who wish to describe phenomena
below the soil surface must conform their thinking to the
dimensional scale of the objects that they wish to describe
mathematically!

Even if the above perspective betokens the validity of considering
the location of propagules in soil as mathematical points, it is
difficult to discern the leap of reasoning required to allow for their
volume in the calculations by those most adamant on this point.
Vanderplank’s (75) argument, which is endorsed by Gilligan (29)
and Leonard (45), is that the spores occupy a significant portion of
the soil near the root. The fungus with the chlamydospore 10 umin
diameter, mentioned above, would occupy only 2.25 X 10~ of the
volume even at 3,000 propagules per cubic centimeter.

Gilligan (29) suggests that the sclerotia of R, solani that we used
(60) were 2 mm in size since they passed a 2 mm screen. We screened
to provide a soil-inoculum mix of texture and particle size suitable
for mixing uniformly into similarly screened raw soil without
inoculum. Screening does not determine the size of the propagules;
their dimensions are determined by the genes of R. solani. There
were large and small propagules (38,39), certainly all well below the
size of 2 mm in diameter.

All these considerations fade, however, when the modeler again
descends into the soil to determine the dimensions of the biological
interactions in the infection court. Calculations in the model
involving fixed infection court and fixed inoculum attempted to
determine what proportion of the inoculum touched the infection
court at any given ID. Obviously, propagules do not touch a plane
with their entire surface—they only touch with a portion of their
surface at a point on the rhizoplane. This point of contact must
have dimension, but relative to the area of the rhizoplane, it is
exceedingly small. However, the critical question, in a biological
sense, is: does the small area of contact, assumed in the modelsasa
point, conform to the actual situation where the host barrier is
breached by the soilborne pathogen?

It is well established in plant pathology that propagules
breaching intact host tissue do so by producing germination
hyphae capable of penetration. The diameters of these penetration
hyphae are typically 2-5 um or less. This is the morphological unit
assumed in the models as the point. It is difficult to see how the
volume of a propagule, from which the infection hypha is
produced, has anything to do with the geometry of the infection
process—propagules do not breach host barriers like cannon balls!

Gilligan (29) and Leonard (45) contend that the expansion of a
seed or root will have a significant effect on model construction.
Certainly the root of a beet as it expands must be disruptive to all
the carefully laid geometry of a modeler. Such a situation was not
within the scope of the proposed models at their conception (9).
Nevertheless, lesser alterations in the geometry of other infection
courts occur and the key question is whether they are significant
enough to be taken into consideration. The magnitude of change
would not seem great for seed used in our investigations. For
example, the increase in surface area of a radish seed due to
imbibition during the 20- to 30-hr geriod during which it may be
damped-off (13) is less than 2 X 10",

Some situations in soil require that the growth of the host must
be taken into consideration. The models (9) describe this situation
in the systems involving moving infection courts. These are
complicated systems involving rate of root growth, placement of
inoculum in relation to the host, speed of germination,
environment, as well as inoculum density as demonstrated by
Griffin (31). The models for moving infection courts (9) simplify
this situation by treating only the points of penetration. Thus,
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alterations of host geometry are automatically accounted for.

Asdeveloped later, the reasoning used by us and/ or by the critics
(29,33,34,45,75) to decide whether to treat the penetration of a host
barrier as a point or whether the geometry is altered significantly by
slight changes in dimension in modeling is empirical. In biology,
such intuitive processes must be tested by experimentation. The
passage concerning points (above), however, provides a basis for
this assumption as a first approach.

Vanderplank (75) and Gilligan (29) also state that the models do
not allow for competition between propagules for a restricted
number of susceptible sites on target organs. This is true.
Competition for susceptible sites occurs in the transitional and
plateau portions of the ID-D curve (Fig. 1). It has been emphasized
repeatedly (eg, 7.8) that the models only describe the ascending
portion of the curve when independent action of propagules (27)
operates. As developed later, data points used by us were carefully
chosen to insure that they were not on the transitional or plateau
portion of the curves.

The conceptual model and the value of w. It is not the purpose of
this letter to provide a critical review of the alternative models of
Grogen et al (33) and Gilligan (29). Their validity will be tested
through experimentation by research workers in the future. Here,
we discuss ecological and epidemiological considerations necessary
for their development in theory expansion.

During the last three decades, the conceptions of ecological
interactions between soilborne pathogens and infection courts of
their hosts have been developed through massive research
contributions. These concepts have been reviewed and described in
many books, symposium papers, and review articles (eg,
16,21,28,48,71). The principles developed suggest that soil alone
cannot provide carbon substrates necessary for germination and
penetration of a host (70) by most soilborne pathogens. Substrates
are provided by host organs developing below the soil surface.
Thus, the concept of competent distance or volume (34), which
appears to apply only to sclerotial units, has limited application.

In the systems of Grogan et al (34) and Gilligan (29), all the
propagules in a volume of soil are considered as participating and
are successful in the infection process. In this simple form, as
inoculum density increases, the number of infections increase in
direct and equal increments. This takes the form of the relationship
illustrated in Fig. 2B, line a. Grogan et al (34), however, do not
consider the efficiency of the propagules in inducing infection and
Gilligan (29), without citing evidence, arbitrarily assigns a 50%
value. Our preliminary calculations from the data provided by
Benson and Baker (13) suggest that efficiency of propagules of R.
solani is below 10%. Without knowledge of efficiency, w (width of
the rhizosphere) cannot be calculated.

Simplifying assumptions may be valuable in modeling such
relationships but it is also necessary to consider the dimensions and
configuration of the infection court. For example, Gilligan (29)
considers the entire root cylinder as susceptible to penetration; this
may or may not be true depending on the disease system (9). Evenif
the entire root is susceptible, the growth of the organ as it moves
through the soil triggers germination of propagules, resulting in
successful infection, lysis, or other alterations. Thus, there may be
none or a lower number of propagules under the influence of the
more mature sections of the root which often exude lower amounts
of exudates than do root tips (61). The concepts of Groganetal (34)
and Gilligan (29) were involved early on in the construction of the
models (9) but were considered inadequate due to these and other
biological and geometrical factors (including displacement of the
propagules as they contact the root). Thus, the concept of the
moving infection court was developed. In this, only the points at
which infection will occur on the root were considered from a
mathematical standpoint. This has been modeled by Bloomberg
(15). This certainly conforms to the biology of the situation and
allows for the efficiency component. Efficiency is measured by the
position of the log ID-log infections relationship as determined
graphically in regression analysis.

Gilligan (29) uses the data of Rouse and Baker (60) to calculate
the value of wassuming that the spermosphere is a sphere encircling
the seed with an equal radius value in all planes. The pathogen, R.



solani, grows through soil approximately twice as fast in a
horizontal as in a vertical plane (14). Thus, the spermosphere
should be in the shape of an ellipse in cross section. We have
confirmed this geometrical configuration through observations of
propagules of R. solani growing in the vicinity of a radish seed.
Thus, wis different for every given plane about a seed for this type
of host-pathogen interaction.

The principle is clear: conceptualizations provide a starting
point, but the concrete biology and efficiencies of the host-
pathogen interaction must be integrated into the system for
construction of a valid model. “The more the marble wastes, the
more the statue grows” (Michelangelo).

Criticisms of the mathematics developed by Leonard. Leonard
(45) endorses the empirical attacks on the models by Vanderplank
(75), Gilligan (29), and Grogan et al (34) as adequate “common
sense approaches” if it were “not for the mathematical problem.”

If the rhizoplane has volume, there is no question regarding the
slope value of the log ID-log infections relationships its value is 1.0 as
developed in Fig. 2A-C. If infection on a rhizoplane (in a concrete
natural system) occurs at a point, as developed above, then the log
ID-log infection relationships slope value should be 0.67 (9).
Although these calculations were used in physical chemistry for
similar relationships on a molecular basis (36), Leonard (45)
contends that the mathematics we used (9) are invalid. Our
calculations were not new, only an application of the basic
relationships discovered in antiquity between volume and surface
area. Arrhenius (3) used these relationships in his idea of
panspermia and more recently it has been used in modeling fungal
growth (58,59,73). The basic mathematical approach, therefore, is
well established in the physical and biological sciences and it is
surprising that it is questioned. However, we contribute a defense
of our application of the principle in detail:

The number of spores, N, ina cylinder of radius, x, surroundinga
root of radius, r, and length, L, is as Leonard (45) stated, I(wx*L —
wr’L) in which 1 is the spore density. The result of differentiating
this expression may be considered to be either the derivative,
dN/dx =2ImrxL, or the differential, dN = 2I7xLdx. Leonard gave
the result as 21wxL (ie, the derivative). The expression, dN/dx,
represents the rate of accumulation of spores into a theoretically
expanding cylinder around the root (the rhizosphere) at a radial
distance of x per unit increase of this radial distance. At x =r, the
expression represents the rate of accumulation of spores into the
rhizosphere at the root surface per unit of increase of the radius of
the rhizosphere. For example, x = r the rate could be 1,000 spores
per centimeter, which is 100,000 spores per meter and 100 spores
per millimeter. Clearly, this rate (number of spores per unit length)
is not the number of spores impinging on the root surface. In
contrast, the differential, dN = 2I7xLdx, represents the number of
spores in a cylindrical shell at a radial distance of x and having an
infinitesimal thickness of dx. However, dN is infinitesimal in the
same sense that dx is infinitesimal. As dx approaches zero, so does
dN. Thus, the limit of d N =2IrxLdx, as dx approaches zero, is zero
and not 2I7xL. The limit of the differential, dN, at x =r as dx nears
zero does not represent the number of spores impinging on the root
surface. Ifit did, the number of such spores would be zero. For these
reasons, therefore, Leonard did not demonstrate that the number
of spores impinging on the root surface of a cylindrical root is
proportional to the spore density, I.

Leonard (45) pointed out that the demonstration by Baker et al
(9) that surface density, S, is proportional to the 2/3 power of
volume density, I, was based solely on the spatial distance between
the points (inoculum propagules) of a tetrahedral density
distribution and thus omitted, at least explicitly, a consideration of
the surface dimensions of the root.

The 2/3 power relationship between surface density and volume
density is a characteristic of density per se and not peculiar to a
tetrahedral or other distribution. That surface density and volume
density are inversely related to the square and the cube of the
distance between density points, respectively, holds for a regular as
well as a random distribution and, consequently, can be applied to
the average distance between density points,

In concept, volume density is expressed as a ratio based on a

uniform distribution such that the density of a medium (a number
per unit cube) times any volume of the medium (in unit cubes)
equals the total number for that volume. This implies that the
surface (area) density of the medium (a number per unit square) is
equal to the 2/3 power of the volume density. In other words, the
number of particles in the surface array on the face of a cube is
equal to the 2/3 power of the number of particles in a uniform cubic
array within the cube. This is simply a corollary of our concepts of
area and volume which are, respectively, concepts of standard
squares and standard cubes.

A distribution need only be approximately, not absolutely,
uniform and cubic for application of the concepts of volume and
surface densities, Otherwise, such concepts would have no
application to the physical world. Furthermore, models in
epidemiology deal with populations, not individuals.

An example of a volume:surface density relationship in which
the surface contour is clearly not the determining factor is that of a
metal coat hanger or other shaped surface dipped into a can of
paint. The volume density of the pigment particles and not the
shape of the hanger determines the number of pigment particles per
surface area (ie, the surface density) on the hanger.

This example is appropriate because the root surface is relatively
large in comparison to the distance between spores, and the average
distance between randomly distributed spores becomes constant
with only a few measurements (Fig. 4). Also, since the concept of
density is applied in relationship to whole plants and not to sections
of roots, the surface considered is the aggregate host surface
exposed to soil and the volume considered is that surrounding the
system and not that of a single section.

In a somewhat similar solution of a problem that confirms our
mathematics, Gyani (36) has proposed that the 1, 2/3, and 1/3
power relationships observed in adsorption phenomena reflect
volume:volume, surface:volume, and linear;volume relationships,
respectively, at the molecular level. Analogously, if the 1 and 2/3
power relationships of infection and inoculum density represent a
rhizosphere and a rhizoplane, respectively, then one could
conjecture that a 1/3 power relationship would be found if the
pathogen required a wound to penetrate and linear fissures were
present on the root surface; eg, due to mechanical injury.

Leonard’s argument that the arc of a curved figure conforms to
the distance between density points only at infinitesimally small
values of arc and density interpoint distance is contrary to the
applicability of the concept of density to curved figures in general
and not peculiar to our application of it to plant pathology. It is not
an argument apropos to the 2/3 power relationship. The
conclusion of the argument, as presented, would be that the
concept of density cannot be applied to curved figures unless the
density field is a continuum rather than a distribution of points. A
distribution of 1 mm distance between points corres’ponds toa
surface density of 10° points per square meter and 10 points per
cubic meter. If his argument is accepted, one would conclude for
this density field that a cube | m ona side would have 6 X 10° points on
its surface, but one could not conclude that a sphere having the same
surface area of 6 m” would have the same number of points (6 X 10°)
onits surface. There is no such thing in the real world as an absolutely
continuous density. Air and lead, for example, are not absolute
continua. Thus, only noncurved figures could be considered in
density phenomena.

The ultimate test of experimentation. Kranz (42) provides an
excellent summary of the ultimate criteria for testing the validity of
models developed for epidemiology: “a model is, in any case, an
abstraction of the real world, a simplified approximation to reality
(or parts of it) but by no means the reality itself or its replica. This
implies that a model is rarely complete, final and an objective in
itself. Every model is based on previous experience or experiments
and must be verified again and improved by experimentation.”
Thus, all the empirical reasonings used by the critics
(29,33,34,45,75) or by us are trifles if not experimentally verified.
One who models to the exclusion of all else can only dream of the
natural world.

Is the 0.67 (log-log) slope found in the literature for ID-D curves
obtained by experimentation? A review of all appropriate data
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published before the models were constructed (7) suggested slope
values (log-log) were near 0.67 for club root of crucifers and
Fusarium root rot of beans. Since the models were fashioned, slope
values for log ID-log infections relationships near 0.67 have been
reported by members of our group (35,60) and by others
(17,37,41,50,51,68,69). Whereas we do not consider that the
evidence for verification of the models predicting slope values of
0.67 is complete, actual experimentation suggests that the
hypothesis should not be abandoned.

Leonard (45) admits that “the experimental evidence shows...in
many cases the slopes of the log-log plots are near 0.67.” The critics
offer no explanation for this phenomenon except that “additional
increments of inoculum from the plateau portion of the curve
included in the regression analyses [would decrease the slope value]
to 0.67 or lower” (33). As treated in this letter and in our other
publications (eg, 7-9, 35,60), this concern is ever present.

Until recently there had been no objective means for determining
whether data points lie on the transitional or plateau portions of the
ID-D curve. Points usually are selected at relatively low values of
disease incidence or severity to insure a high probability that they
lie on the ascending portion of the curve and also to afford
confidence in the successful operation of the multiple infection
correction. At least two methods may now be advanced, however,
for an objective analysis to determine whether data points derived
from experimentation may be used with confidence: (i) regression
analysis yielding slope values near those predicted by the models
whether a few (near the origin) or many more experimentally
derived data points are used, and (ii) demonstration that a slope
value (log-log) of 1, which by definition should not include data
points on the transitional or plateau portions of the ID-D curve,
can be reduced in the same disease system with the same inoculum
levels to a value of 0.67.

Regarding method i: articles with relatively high numbers of
experimentally derived data points for ID-D curves are becoming
available. For example, Stasz and Harman (68) exposed resistant
or susceptible pea seeds to 15-35 inoculum levels of Pythium
ultimum. Slopes of regression lines in all these tests did not differ

% 51052025
INOCULUM DENSITY
(propagules/g soll) (log propagules/g soil)

Fig. 5. Typical inoculum density-disease relationships accumulated by
Stasz and Harman (68) for Pythium ultimum inducing rot of pea seeds
using all points available below 90% disease. A, Curves resulting from best
fitin the semilog transformation for the first four, five, six, seven, and total
number (nine) of data points. B, Slope values (log-log transformation) using
the data points in a are shown on the regression line.
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significantly from 0.67 (log-log). The slope of 0.67 (log-log) predicts
a curve when DI corrected for multiple infections (1/[1-y]) is
plotted as a function of ID (nontransformed). A curve is generated
no matter how many data pointsare used; slope values are near 0.67
(log-log) whether four, five, six, seven, or nine points are used in
regression (Fig. 5). It is not likely that the slope value near 0.67
(log-log) was generated by incorporation of points from the
transitional or plateau portions of the ID-D curve.

Regarding method ii: Rouse and Baker (60) exposed radish seeds
to various ID of R. solani. In unamended raw soil, slope values
were near | (log-log) as has been the case in other published reports
(7,78). This suggests that inoculum functions in the spermosphere.
This is also the slope value that should be generated in the systems
of Gilligan (29), Leonard (45), and Grogan et al (34). If data points
had been included from the transitional or plateau portions of the
ID-D curve, the slope value (log-log) should have been <1.0
whatever system was used. When cellulose was added to soil, the
slope value of the log ID-log infection curve was reduced to
0.61—not significantly different from 0.67 (60, Fig. 2)—and the
same inoculum levels were used as in raw soil. Also, atall inoculum
levels, DI was reduced in cellulose-amended soil compared to raw
soil. Thus, if anything, less inoculum participated in the infection
process in the soil treated with cellulose. All these considerations
demonstrate that data points generating the slope value of 0.61
could not have been on the transitional or the plateau portion of the
ID-D curve obtained for soil amended with cellulose if points were
not on this portion of the curve when the experiment was done in
unamended soil.

The models discussed above are still considered by us to be in the
hypothesis category, but considering the factors elaborated above
we submit that the evidence does not permit the conclusion that the
models should be abandoned. Rather, the experimental evidence
suggests that they may be valid for a number of systems involving
soilborne pathogens if the essence of experimental application is
within the frame of the models. When they were first conceived (9),
they were diffidently advanced as abstractions of the geometrical
“considerations” encountered by soilborne pathogens and their
hosts. They were unproved hypotheses which, if valid, might have
some application in basic concepts. Since that time, however, they
have been used for practical applications, for example, in the
precise comparative quantitative analysis of relationships
involving biological control through organic amendments to soil
(35,60), mechanisms involving disease control using pathogen-
suppressive soils (78), and survival and pathogenic activity of
inoculum in storage (41).

The truth of the matter is that nothing that is modeled by humans
is ever exactly right. It is partly our fate and partly our fault. There
is only one consolation: whenever human construction falls short
of reality, reality always wins out in the long run.

Over 80 yr ago, Erwin F. Smith (64) became embroiled in
forensic biology. We advance one of his statements as appropriate
even today: “The courteous reader is also requested to examine into
these diseases and repeat my observations and experiments and
those of seven other people whose writings are mentioned by me as
worthy of consideration....”

LITERATURE CITED

1. Al-Shukri, M. M. 1969. The predisposition of the cotton plant to
Verticillium and Fusarium wilt diseases by some major environmental
factors. J. Bot. Un. Arab. Repub. 12:13-25.

2. Anderson, J. A. 1945. The preparation of illustrations and tables.
Trans. Am. Assoc. Cereal Chem. 3:74-104.

3. Arrhenius, S. 1908. Worlds in the Making. Harper and Brothers, New
York. 229 pp.

4. Ashworth, L. J., Jr., Huisman, D. C., Grogan, R. G., and Harper, D.
M. 1976. Copper-induced fungistasis of microsclerotia in Verticillium
albo-atrum and its influence on infection of cotton in the field.
Phytopathology 66:970-977.

5. Ashworth, L. J., Jr., McCutcheon, O. D., and George, A. G. 1972,
Verticillium albo-atrum: the quantitative relationship between
inoculum density and infection of cotton. Phytopathology 62:901-903.

6. Baker, K. F., and Cook, R. J. 1974, Biological Control of Plant
Pathogens. W. H. Freeman and Co., San Francisco. 433 pp.

7. Baker, R. 1971. Analyses involving inoculum density of soil-borne plant



20.

21.

22,

23.

24,

25,

26.

27.

28.
29.
30.
3L
32

33

34,

35,

pathogens in epidemiology. Phytopathology 61:1280-1292.

. Baker, R. 1978. Inoculum potential. Pages 137-157 in: J. G. Horsfall

and E. B. Cowling, eds. Plant Disease, An Advanced Treatise. Vol. II.
How Disease Develops in Populations. Academic Press, New York,
436 pp.

- Baker, R., Maurer, C. L., and Maurer, R. A. 1967. Ecology of plant

pathogens in soil. VII. Mathematical models and inoculum density.
Phytopathology 57:662-666.

- Baker, R., and Phillips, D. J. 1962. Obtaining pathogen-free stock by

shoot tip culture. Phytopathology 52:1242-1244,

. Bald, J. G. 1970. Measurements of host reaction to soil-borne

inoculum. Pages 37-41 in: T. A. Toussoun, R. V. Bega, and P. E.
Nelson, eds. Root Diseases and Soil-Borne Pathogens. University of
California Press, Berkeley. 252 pp.

- Benson, D. M., and Baker, R. 1974, Epidemiology of Rhizoctonia

solani preemergence damping-off of radish: Influence of
pentachloronitrobenzene. Phytopathology 64:38-40.

- Benson, D. M., and Baker, R. 1974. Epidemiology of Rhizoctonia solani

pre-emergence damping-off of radish: Inoculum potential and
disease potential interaction. Phytopathology 64:957-962.

- Blair, I D. 1942. Studies on the growth in soil and the parasitic action of

certain Rhizoctonia isolates from wheat. Can. J. Res., Sect. C, Bot. Sci.
20:174-185.

- Bloomberg, W. J. 1979. Model simulation of infection of Douglas-fir

seedlings by Fusarium oxysporum. Phytopathology 69:1072-1077.

. Bruehl, G. W. (ed.) 1975. Biology and Control of Soil-Borne

Pathogens. The American Phytopathological Society, St. Paul, MN.
216 pp.

- Byther, R. 1968. Etiological studies on foot rot of wheat caused by

Cercosporella herpotrichoides. Ph.D. thesis, Oregon State University,
Corvallis.

. Christensen, P. D., Smith, L. S., and Lyerly, P. J. 1954, The occurrence

of Verticillium wilt in cotton as influenced by the level of salt in the soil.,
Plant Dis. Rep. 38:309-310.

. Clark, F. E. 1940. Notes on types of bacteria associated with plant

roots. Trans. Kansas Acad. Sci. 43:75-84.

Clark, F. E. 1949. Soil microorganisms and plant roots. Adv. Agron.
1:241-288.

Clark, F. E. 1965. The concept of competition in microbial ecology.
Pages 339-347 in: K. F. Baker and W. C. Snyder, eds. Ecology of
Soil-Borne Plant Pathogens. University of California Press, Berkeley.
571 pp.

Coley-Smith, J. R. 1960. Studies of the biology of Sclerotium
cepivorum Berk. IV. Germination of sclerotia. Ann. Appl. Biol.
48:8-18.

Cook, R. J., and Schroth, M. N. 1965. Carbon and nitrogen
compounds and germination of chlamydospores of Fusarium solani f.
phaseoli. Phytopathology 55:254-256.

Cook, R. J., and Snyder, W. C. 1965. Influence of host exudates on
growth and survival of germlings of Fusarium solani f. phaseoli in soil.
Phytopathology 55:1021-1025.

Dimond, A. E., and Horsfall, J. G. 1965. The theory of inoculum. Pages
404-415in: K. F. Baker and W. C. Snyder, eds. Ecology of Soil-Borne
Plant Pathogens. University of California Press, Berkeley. 571 pp.
Dix, N. J. 1967. Mycostasis and root exudation: factors influencing the
colonization of bean roots by fungi. Trans. Br. Mycol. Soc. 50:23-31.
Garrett, S. D. 1960. Inoculum potential. Pages 23-56 in: J. G. Horsfall
and A. E. Dimond, eds. Plant Disease, An Advanced Treatise. Vol. I11.
How Plants Suffer From Disease. Academic Press, New York. 675 pp.
Garrett, S. D. 1970. Pathogenic Root-Infecting Fungi. Cambridge
University Press, Cambridge, England. 294 pp.

Gilligan, C. A. 1979. Modeling rhizosphere infection. Phytopathology
69:782-784.

Gregory, P. H. 1948. The multiple-infection transformation. Ann.
Appl. Biol. 35:412-417.

Griffin, G. J. 1969. Fusarium oxysporum and Aspergillus flavus spore
germination in the rhizosphere of peanut. Phytopathology 67:72-78.
Griffin, G. J., Hora, T. S., and Baker, R. 1975. Soil fungistasis:
elevation of the exogenous carbon and nitrogen requirements for spore
germination by fungistatic volatiles in soils. Can. J. Microbiol.
21:1468-1475.

Grogan, R. G., loannou, N., Schneider, R. W., Sall, M. A., and
Kimble, K. A. 1979. Verticillium wilt on resistant tomato cultivars in
California: Virulence of isolates from plants and soil and relationships
of inoculum density and disease incidence. Phytopathology
69:1176-1180.

Grogan, R. G., Sall, M. A, and Punja, Z. K. 1980. Concepts for
modeling root infection by soilborne fungi. Phytopathology
70:361-363.

Guy, S. O., and Baker, R. 1977. Inoculum potential in relation to

36.

37

38.

39.

41,

42,

43.

45,
46.
47.
48,
49.

50.
51,

52,

53.
54,
55.

56.

57.
58.

39.

6l.

62.

63,

65.

66.

. Last, F. T., and Hamley, R.

biological control of Fusarium wilt of peas. Phytopathology 67:72-78.
Gyani, B. P, 1945. Distribution law, adsorption, and chemical reaction.
J. Phys, Chem. 49:442-453,

Hanounik, S. B., Pirie, W. R., and Osborne, W. W. 1977. Influence of
soil chemical treatment and host genotype on the inoculum density-
disease relationships of Cylindrocladium black rot of peanut. Plant
Dis. Rep. 61:431-435,

Henis, Y., and Ben-Yephet, Y. 1970. Effect of propagule size of
Rhizoctonia solani on saprophytic growth, infectivity, and virulence on
bean seedlings. Phytopathology 60:1351-1356.

Henis, Y., Ghaffar, A., Baker, R., and Gillespie, S. L. 1978. A new
pellet-soil sampler and its use for the study of population dynamics of
Rhizoctonia solani in soil. Phytopathology 68:371-376.

. Kershaw, K. A. 1964. Quantitative and Dynamic Ecology. American

Elsevier, New York. 183 pp.

Kittle, D. R., and Gray, L. E. 1980. Storage and use of Phytophthora
megasperma var. sojae oospores as inoculum. Phytopathology
70:821-823.

Kranz, J. 1974. Introduction, Pages 1-6 in: J. Kranz, ed. Epidemics of
Plant Disease. Springer-Verlag, New York, Heidelberg, and Berlin. 170
pp.

Kranz, J. 1974. The role and scope of mathematical analysis and
modeling in epidemiology. Pages 7-54 in: J. Kranz, ed. Epidemics of
Plant Disease. Springer-Verlag, New York, Heidelberg, and Berlin. 170
Pp.

1956. A local lesion technique for
measuring the infectivity of conidia of Botrytis fabae Sardina. Ann.
Appl. Biol. 44:410-418.

Leonard, K. J. 1980. A reinterpretation of the mathematical analysis of
rhizoplane and rhizosphere effects. Phytopathology 70:695-696.
Linford, M. B. 1942. Methods of observing soil flora and fauna
associated with roots. Soil Sci. 53:93-103.

Lockwood, J. L. 1964. Soil fungistasis. Annu. Rev. Phytopathol.
2:341-362.

Lockwood, J. L. 1977. Fungistasis in soils. Biol. Rev. 52:1-43,
McCoy, M. L., and Powelson, R. L. 1974, A model for determining
spatial distribution of soil-borne propagules. Phytopathology
64:145-147,

Mitchell, D. J. 1975. Density of Pythium myriotylum oospores in soil in
relation to infection of rye. Phytopathology 65:570-575.

Mitchell, D. J. 1978. Relationships of inoculum levels of several soil-
borne species of Phytophthora and Pythium to infection of several
hosts. Phytopathology 68:1754-1759.

Nash, 8. M., and Snyder, W. C. 1962. Quantitative estimations by plate
counts of propagules of the bean root rot Fusarium in field soils.
Phytopathology 52:567-572.

Nelson, F. E., Tammen, J., and Baker, R. 1960. Control of vascular wilt
diseases of carnation by culture indexing. Phytopathology 50:356-359.
Papavizas, C. C., and Davey, C. B. 1961. Extent and nature of the
rhizosphere of Lupinus. Plant Soil 14:215-236.

Parkinson, D., Taylor, G. S., and Pearson, R. 1963. Studies on the
fungi in the root region. I. The development of fungi on young roots.
Plant Soil 19:332-349,

Petersen, L. J. 1959. Relations between inoculum density and infection
of wheat by uredospores of Puccinia graminis var. tritici.
Phytopathology 49:607-614.

Peto, S. 1953. A dosage response equation for the invasion of
microorganisms. Biometrics 9:320-335.

Pirt, S. J. 1966. A theory of the mode of growth of fungi in the form of
pellets in submerged culture. Proc. R. Soc. Lond. B Biol. Sci.
166:369-373.

Prosser, J. I.,and Trinci, A. P.J. 1979. A model for hyphae growth and
branching. J. Gen. Microbiol. 111:153-164.

- Rouse, D. L., and Baker, R. 1978. Modeling and quantitative analyses

of biological control mechanisms. Phytopathology 68:1297-1302.
Schroth, M. N., and Hildebrand, D. C. 1964. Influence of plant
exudates on root-infecting fungi. Annu. Rev. Phytopathol. 2:101-132.
Shert, G. E., and Lacy, M. L. 1974, Germination of Fusarium solani f.
sp. pisi chlamydospores in the spermosphere of pea. Phytopathology
64:558-562.

Singh, R. S. 1965. Development of Pythium ultimum in soil in relation
to presence and germination of seeds of different crops. Mycopathol.
Mycol. Appl. 27:155-160.

. Smith, E. F. 1899. Dr. Alfred Fischer in the role of pathologist.

Zentralbl. Bakteriol. Abt. 11. 5:810-817.

Smith, W. H., and Peterson, J. L. 1966. The influence of the
carbohydrate fraction of the root exudate of red clover, Trifolium
pratense L., on Fusarium spp. isolated from the clover root and
rhizosphere. Plant Soil 25:413-424.

Stanghellini, M. E., and Hancock, J. G. 1971, Radial extent of bean

Vol. 71, No. 4, 1981 371



67.
68.

69.

70.

71.

72.

372

spermosphere and its relation to the behavior of Pythium wltimum.
Phytopathology 61:165-168.

Starkey, R. L. 1958. Interrelations between microorganisms and plant
roots in the rhizosphere. Bacterial. Rev. 22:154-172,

Stasz, T. E.,and Harman, G. E. 1980. Interactions of Pythium ultimum
with germinating resistant or susceptible pea seeds. Phytopathology
70:27-31.

Stienstra, W. C., and Lacy, M. L. 1969. Effect of inoculation density
and planting depth on infection of onion by Urocystis colchici. (Abstr.)
Phytopathology 59:1052.

Toussoun, T. A. 1970. Nutrition and pathogenesis of Fusarium solanif.
sp. phaseoli. Pages 95-98 in: T. A. Toussoun, R. V. Bega, and P. E.
Nelson, eds. Root Diseases and Soil-Borne Pathogens. University of
California Press, Berkeley, 252 pp.

Toussoun, T. A., Bega, R. V., and Nelson, P. E. 1970. Root Diseases and
Soil-Borne Pathogens. University of California Press, Berkeley. 252 pp.
Toussoun, T. A., Smith, S. M., and Snyder, W. C. 1963. The effect of

PHYTOPATHOLOGY

73.
74.
75,

76.

77.

78.

nitrogen sources and glucose on the pathogenesis of Fusarium solanif.
sp. phaseoli. Phytopathology 50:137-140.

Trinci, H. P. 1970. Kinetics of the growth of mycelial pellets of
Aspergillus nidulans. Arch. Mikrobiol. 73:353-367.

Vanderplank, J. E. 1963. Plant Diseases: Epidemics and Control.
Academic Press, New York, San Francisco, and London. 349 pp.
Vanderplank, J. E. 1975. Principles of Plant Infection. Academic Press,
New York, San Francisco, and London. 216 pp.

Waggoner, P. E. 1977. Comparisons of mathematical models to
epidemiology. Pages 191-206 in: P. R, Day, ed. The Genetic Basis of
Epidemics in Agriculture. New York Academy of Sciences, New York.
400 pp.

Wasli]::. R. L, 1962. Mechanism of action of an infective dose of Botrytis
spores on bean leaves. Trans. Br. Mycol. Soc. 45:465-473.

Wijetunga, C., and Baker, R. 1979. Modeling of phenomena associated
with soil suppressive to Rhizoctonia solani. Phytopathology
69:1287-1293.



