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Mode (6) proposed a mathematical model to describe the
manner in which the proportions of two races in a mixture will
change when the two races have different reproductive rates. This
model was used by Leonard (4) in studies of mixed Puccinia
graminis f. sp. avenae populations with what he described as
“reasonably good fit.”

Horsten (3) also used the same model in his evaluation of
parasitic fitness of carbendazim- and edinphos-resistant genotypes
of Septoria nodorum. MacKenzie (5) explicitly related Mode’s
model with Vanderplank’s apparent infection rate and observed
that

InW =r, —r;and
W= c':l =2

in which W = relative parasitic fitness of the less fit race; r; =
apparent infection rate of the less fit race; and r, = apparent
infection rate of the more fit race.
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In Mode’s terminology
{l _S}n =e1|| -2t
thus,
nin(1 =)= —r)t—In(1 =S)=[(r1 —r2) t]/n

in which ry, r; retain the meanings given above, S = coefficient of
selection, and n = number of generations.
To summarize, if:

Xo, X; = proportions or amounts of disease caused by a less fit
(weaker) race at times 0 (beginning of epidemic) and t,
respectively.

Yo, ¥t = proportions or amounts of disease caused by a more fit

(stronger) race at the same time.

r; = apparent infection rate for x

r; = apparent infection rate for y

then according to Mode (6) and MacKenzie (5)
X/y = (Xo/yo) €

{ry-ralt

and
In(x/y) = In(xo/yo) + (ri—r2) t (D



Thus, the increase of proportion of the strong race can be predicted
by the intensity (r; — rz), the duration (t) of selective pressure, and
its initial occurrence, when the favorable selective pressure starts to
operate. Fleming and Person (2) have pointed out that one of the
assumptions underlying Eq 1 is that “competitive or synergistic
interactions between different units of inoculum on the common
host are negligible™; ie, that the model is valid only during the
logarithmic stage of an epidemic.

However, competition between the two races for the host’s
susceptible sites is liable to occur after the epidemic’s logarithmic
stage and this is the problem this paper attempts to solve.

Mathematical Model for Competing Races

When decreasing availability of a host’s susceptible sites begins
to become limiting, increase in amounts of disease can be described
by:

dx/dt = rix(1—x—y) (2)
dy/dt = r2y(1—x—y) 3)

in which; x, y, r;, and r; have the meanings ascribed to themin Eq 1.
At the same time to an observer, total visible disease z=x +y, and

dz/dt = r;z(1-2) (4)

Eq 2, 3, and 4 cannot be solved explicitly; however, Eq 2 and 3 can
be used to calculate x,/y.. For x +y =1z, from Eq 2 and Eq 3:

(1/x) (dx/dt) = ri(1—z2)
(1/x) (dy/dt) = ra(1—2)

Since x and y are functions of t, by the chain rule:

(1/x) (dx/dt) =dInx/dt = ri(1—2)
(1/y) (dy/dt) = diny/dt = r;(1-2)

Multiplying the above by rand ry, respectively, and subtracting the
second equation from the first gives:

r2(dinx/dt) — ri(dlny/dt) =0
d/dt(Inx2=Iny"") = d/dt[In(x"?/y")]= 0 or
In(x'2/y") = C (a constant)

The constant C=In(xo'2/yo'1), in which xo, yo the amounts of disease
at the onset of the competition; ie, when z = 0.05,

if In(x:2/y'1) = In(X0'?/yo')
Xlrzrfy;' = X2 ’)Jor' or x:'l"l(x.f’y:)” =¥ XOKZ_T‘(Xm’Yn)r‘

and In(x:/y:) = In(Xo/yo) + [(r2—11)/ 1] In(Xo/ x:) (5)

which again allows prediction of the increase of proportion of the
strong race as a function of the intensity of selective pressure
[(rz—r1)/r1], itsinitial occurence (Xo/ yo), and a factor that combines
the effect of time and increased occupation of hosts’ susceptible
sites by the weak race [In(xo/x)].

Application of the Model

The difference between Eq 1 and 5 can best be illustrated when yo
and y, are relatively small; ie, when the “strong™ race occurs in
relatively small, but increasing, proportions. In practice this
situation occurs in the early stages of selection of a fungicide-
resistant race that occurs at low frequency in a pathogenic
population with a fungicide-sensitive race at high frequency.

In this case, since yo and y, are very small

In[%/(1=x)] = In[Xo/(1—X0)] + 11t

and In(xo/x:) = In[(1—x0)/(1=x,)] — rit. If this is substituted and

suitably rearranged, Eq 5 becomes:
In(x,/y:) = In(Xo/ yo) + (ri—r2) t + [(rz—r1) /11 ] In [(1=X0)/ (1=%:)] (6)

It should be noted that during the logarithmic stage of an epidemic
since x, = xoe'!' Eq 5 becomes:

In(%:/ 1) =In(xo/ yo) +[(r2—r1)/ ri]1n (Xo/ Xee"") = In(Xo/ yo) + (ri—ra)t

ie, identical to Eq 1.

What Eq 6 says is that the proportion of the strong race will
increase more slowly than Eq 1 would predict because some of
the susceptible sites available for its multiplication will have
already been occupied by the weak race.

It also says that for a given ratio r2/r, this “delaying” effect will be
greater the higher the value of r, is, and that for a given value of ry,
this “delaying” effect will be greater the higher the ratio r2/r).

Theoretical calculations that illustrate the difference between Eq |
and 5 (or Eq 6) are presented in Table 1. At the end of a 40-day
epidemic there is a very significant divergence between predictions
based on the two equations. The log/time linear model (Eq 1)
predicts a higher proportion of the strong race.

Most of the data in the literature such as those produced by
Ruppel (7) or Horsten (3) cannot be used to verify the model
presented in this paper. They have been generated by one or more
consecutive passages (inoculations and reisolations) started with a
mixture of known initial composition of sensitive and resistant
spores. Thus apparent infection rates cannot be calculated and at
the same time no judgement can be made as to whether the disease
level at each passage was sufficiently high to cause competition for
susceptible sites.

The only set of data found that could be used in a model
comparison were those presented by Dovas et al (1) and
subsequently discussed by MacKenzie (5).

The results of this comparison are presented in Table 2.

The comparison is not very conclusive. In the unsprayed
“sensitive” strain epidemic the proportion of the resistant strain

TABLE 1. Comparison of two models to predict changes in frequencies of a
“strong” race and a “weak™ race of a plant pathogen in a theoretical
epidemic®

. b
Time Predicted values of y/x

(days) Eq I° Eq 5°
0 1:10,000 1:10,000
10 1:1,123 1:1,245
20 1:148 1:229
30 1:18.2 1:45.8
40 1:2.24 1:13.9

*Initial inoculum of the “weak™ and “strong™ races are xo = 0.05 and yo =
0.05 % 107, respectively; rates of increase of the “weak" and “strong” races
are r; = 0.07 and r; = 0.28, respectively.

"y/x = (amount of “strong" race)/(amount of “weak" race).

“In(x/y) = In(xo/yo) + (ri—r2) t (Eq 1).

“In(x/y) = In(x0/yo) + [(r2—r1)/11] In(xe/ x:) (Eq 5).

TABLE 2. Observed and predicted ratios of “weak™ to “strong™ races (x/y)
of plant pathogens in mixed epidemics

“Sensitive unsprayed™ “Mixed strain unsprayed™

X[y x/y
Time Observed  Predicted Observed Predicted
(days) Eq I Eq 5° Eq1® Eq5
0 15.66:1 (no estimate) 3.35:1 (no estimate)
24 4.88:1  5.42:1 10.30:1 1.13:1  0.55:1 L1511
38 317:1 0 319101 5991 0.77:1  0.23:1  0.67:1

*Data of Dovas et al (1). “Sensitive unsprayed™ r; = 0.06423 and r, =
0.10842. “Mixed strain unsprayed”™: r, = 0.08307 and r» = 0.15819.
"In(x/y) = In(xo/yo) + (ri—r2) t (Eq 1).

“In(x/y) = In(Xo/ yo) + [(r2—r1)/ 1] In(xo/ %) (Eq 5).
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increased faster than even the linear log/time model would predict.
In the unsprayed “mixed strain” epidemic, the proportion of the
resistant strain increased slower and a better fit was provided by the
model presented in this paper.

On balance, this evidence does not conclusively favor either
model. One additional note is necessary to relate the data in Table 2
to MacKenzie’s calculation. For the change in proportions of
strains in the unsprayed plots inoculated with the “sensitive strain™
MacKenzie used the apparent infection rate of this epidemic (r =
0.07) as the rate of increase of the “sensitive strain” in comparison
with the rate of increase of the “resistant strain” (r = 0.0926) in
unsprayed plots inoculated with the “resistant strain.” This clearly
overestimates the rate of increase of the “sensitive strain,” because
the “sensitive strain™ epidemic was, in fact, caused by a mixture of
an initially low proportion of the “resistant strain” with the
“sensitive strain.” Therefore, the observed infection rate was higher
than the real infection rate of the “sensitive strain™ alone, because
the contaminant “resistant strain” reproduced faster and increased
in frequency. This is apparent if one considers once more the basic
equations describing the process:

dx/dt = rix(1—x—y),
dy/dt = ry(1-x—y),
dz/dt = ryz(1—x—y),

in which x and r, are amount of disease and infection rate for the
“sensitive strain,” y and rz are amount of disease and infection rate
for the “resistant strain,”and z=x + v, and r: are observed amount
of disease and the accordingly measured infection rate. Actually, r3
is not a constant, but instead r; varies as the ratio x/y changes
througout the epidemic.

Since obviously
dx/dt + dy/dt = dz/dt,
it then follows that
r3 = (xrityn)/(x+y),

and although this relation reflects “instant” values and, in general,
cannot be used in calculations, it illustrates that using r; to estimate
ri, when r; > ry, and in a time interval within which x/y decreases
substantially, will lead to an overestimate of r; and, accordingly, an
underestimate of r; — ra.
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The apparent infection rates used in Table 2 have been calculated
using the method suggested by Vanderplank (8) (p. 109, Exercise 3)
and are a closer approximation to reality.

Practical Implications

The model presented in this paper as well as the one developed by
Mode (6) can be used to predict changing proportions of races or
genotypes that, in a certain set of conditions, exhibit different
apparent infection rates. Mode’s model should be valid only in the
early stages of an epidemic, but the model presented in this paper
should work in the early as well as the later stages because it allows
for the effect of competition. The production of field data that
would allow verification of these models would be welcomed.
Mixtures of fungicide-sensitive and -resistant races seem to be
extremely useful for such studies, because they permit easy and
measurable manipulation of selective pressure intensity and
duration by fungicide application, and they allow practical
measurement of the effects of those changes on genotype
frequencies.
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