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Leonard (4) developed a mathematical model to examine the model is inadequate as an explanation of the stability of gene-
dynamics of a gene-for-gene relationship. He derived algebraic for-gene relationships in the Middle East.
expressions for the frequency of the susceptibility gene in the host Leonard's (4) model is based on Tables I and 2 which are
population and the frequency of the virulence gene in the parasite adaptations of Tables 2 and 3, respectively, in his article. From
population at the single nontrivial equilibrium point. At this point, Table I Leonard expresses the frequency of the virulence gene in
the two alleles of each population are simultaneously in the pathogen population in the (i + l)st generation as
equilibrium and at nonzero frequencies. By computer simulation,
Leonard (4) found that as time progresses in his model the pair of n[ 1 - k + (1 - q 2) a]
gene frequencies departed from each set of nonzero initial values he ni+1 I q 2 ) t + n= [( - q2 ) (a + k]
used and spiralled into the nontrivial equilibrium point when
stabilizing selection occurred. This suggested that his model may beglobally asymptotically stable (Fig. 1 A). Similarly, from Table 2, the change in frequency of the susceptible

gene in the host population is
Subsequently Sedcole (6) offered computer simulation and

analytic arguments claiming that Leonard's model is inherently (1 - q) q2 [ns(a + t) + c - ts] (2)
unstable. He found that the pair of gene frequencies, on leaving any Aq I - s +=nks-(l - 2

) [ns(a + t) + c - ts]
set of nonzero initial values, would spiral away from the nontrivial
equilibrium point (Fig. 1 B). Therefore, Sedcole disagreed with the
suggestion that Leonard's model explains the stability of host- The system is at equilibrium when ni+l = ni and Aq = 0
pathogen systems in the 'fertile crescent' area of the Middel East. simultaneously.

Leonard and Czochor (5) later conceded to Sedcole that the By Eq. 1 and 2
nontrivial equilibrium point of Leonard's model is analytically
unstable. However, in contrast to those of Sedcole, their computer
simulations indicated that Leonard's model is stable. Realizing that ni+l = ni when n = 0, 1 and when q = q* = I - k/(a+t)
Sedcole's (6) analytic treatment is strictly valid only in the
immediate vicinity of an equilibrium point, they resolved this
apparent conflict between the analytic results and their computer and (3)
simulation results by suggesting that many concentric limit cycles
surround the nontrivial equilibrium point (Fig. 1 C). A limit cycle is
a closed trajectory such that no trajectory sufficiently near it is also Aq = 0 when q = 0, 1 and when n = n* (ts-c)/(sa+st).
closed. Thus, Leonard and Czochor (5) imply that very close to the
nontrivial equilibrium point Sedcole's analysis applies and the Given 'stabilizing selection' (sensu Van der Plank [7]), Leonard
system spirals outward to the innermost limit cycle. Farther from (4) has shown that a single nontrivial equilibrium exists at (n*,q*).
the equilibrium point their computer simulations show that the In addition there are four trivial equilibria where each population
system can spiral. inward (5), presumably until it reaches the first has lost an allele. These are (n,q) = (0,0), (0,1), (1,0) and (1,1).
stable limit cycle in its path. A limit cycle is stable or unstable, Leonard and Czochor (5) claim that (n,q) = (0,q*), (l,q*), (n*,0) and
respectively, if any infinitesimally small perturbation to the closed (n*, 1) also are nontrivial equilibria, but either ni+, 0 ni or Aq # 0 at
orbit decays or grows with time. For example, the inner and outer each of these points (Eq. 3).
limit cycles of Fig. IC are stable and unstable, respectively. It is agreed that Leonard's model cycles about the phase plane
Leonard and Czochor (5) suggest that the behavior of host- (the n X q plane in which 0<n< 1, 0 <q< 1). Those involved in the
pathogen systems in the Middle East is consistent with systems that controversy are arguing whether the system spirals into the
have unstable equilibrium points, but stable limit cycles, nontrivial equilibrium point (n*, q*) as originally indicated by

This letter has two purposes: First, in contrast to the claims of Leonard's (4) computer simulations (see Fig. IA), spirals away
both Sedcole (6) and Leonard and Szochor (5), it shows that from it as Sedcole (6) states (see Fig. I B), or does both (depending
Leonard's (4) model is not necessarily locally asymptotically stable. on initial conditions) with the trajectories of the two spirals
Second, and more important, it demonstrates that Leonard's converging on a limit cycle as Leonard and Czochor (5) suspect (see
model is not robust; ie, slight changes in the assumptions can Fig. 1C).
drastically affect its behavior. Three alternative sets of assumptions Consider Sedcole's (6) claims first. He is correct in showing
are examined. The genetic compositions of host and pathogen mathematically that the system
populations are assumed to change: in a sequence of simultaneous
and discrete steps, in a sequence of alternate and discrete steps, and ni+i = g(ni, qi), qi,, = qi+Aq = f(ni,qi) (4)
continuously. Each set of assumptions produces a qualitatively
different type of stability behavior (Fig. 1). In this sense Leonard's is locally unstable. Furthermore, there is no error in his computer

simulation which suggests global instablity (Fig. I B).
However, as Leonard and Czochor (5) note, Sedcole's system

0031-949X/80/03017504/$03.00/0 (Eq. 4), in which Aq = Aq (n), is a misinterpretation of Leonard's
@1980 The American Phytopathological Society model which is of the form:
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ni+i =g(ni,qi),qi+, =qi+ Aq(ni+) =f(ni+i, qi) (5) simultaneous steps. During the growing season the pathogen
adapts to the initial composition of the host and the host adapts to

According to Eqs. 1, 2, and 5: the initial composition of the pathogen. Thus, the influence exerted
by one species on the other is determined solely by its genetic

ag composition at the very beginning of the growing season. Sedcole's
g = 1 model implicitly assumes that the genetic feedback between the two

ani eq populations occurs at discrete intervals and that it is reciprocal
__ __ 2q*n*(I-n*)(a + t) when it does occur.
ag 2qn*(-n*)a + t X12 s In contrast, Leonard's model (Eq. 5) assumes that the genetic

aq eq 1-(1q*2)t say (6) compositions of host and pathogen populations change in a
sequence of alternate steps. During the growing season the
pathogen goes through a number of generations in which it adapts

c~f I- * S (±t-ko = 1, ~yto the unchanging genetic composition of the host. Thus, during the
f ,(l-q*)q2 say growing season, the host affects the pathogen but the pathogen has

an eq (l-s-n*ks)[l-(1-q*2)t] no effect on the genetic composition of the host. At the end of the

growing season, seeds are produced by the host and these initiate a
new host generation for the next season. The proportion of seeds

q_ q I afg f(qg +~ 1q~iI produced by susceptible plants depends upon the genetic
- - +5q, composition of the host population, which has been constant since

aqi eq (\g/q X nag \Sni ]g eq the beginning of the growing season, and the genetic composition

of the pathogen population at the very end of the growing season
- a a(Eq. 5). Thus, Leonard assumes that the genetic feedback between

f (n~- 1 - + -If the two populations occurs at discrete intervals and that it is
an- e•q i e q J aq eq eq nonreciprocal when it does occur.

Actually, the relative reproduction of a host genotype depends
=1 - X12X21 upon the relative amount of disease it has suffered during the

growing season (5). This, in turn, is related to the genetic
in which x 12 > 0. By using these values of the partial derivatives at composition of the pathogen population throughout the growing
the nontrivial equilibrium it can be shown (cf Sedcole [6]) that the
characteristic roots are

TABLE 1. Relative pathogen fitnesses on different hosts
X =(2 -x 12x 21± /(2-x,2x21) 2-4 2.

Relative pathogen fitness on:

When X12X21 < 0 or x12x21 >4,1'XI > 1 so the nontrivial equilibrium rr (susceptible) R-(resistant)
point is locally unstable. When 0 •<x12x21 < 4, 1 X1 = I so the linear Pathogen genotype Frequency q2 l-q2
analysis inconclusively describes the behavior of the nonlinear P
equations (Eq. 5) near the nontrivial equilibrium point. v (avirulent) a-n 1 l-t'v vrln)n l'ka l-k+aa

Thus, Sedcole (6) and Leonard and Czochor (5) err in V (virulent)

unequivocally stating that the nontrivial equilibrium point of ak = cost of virulence, t = effectiveness of resistance, and a = advantage of

Leonard's model is locally unstable. In fact, substitution from the virulent race on hosts with corresponding gene for resistance.

suggested (4) range of parameter values into Eq. 6 indicates that
generally .0075 < x12 x21<1.02. Hence, the local stability of the
nontrivial equilibrium point is uncertain for all reported computer A B
simulations (4,5,6). Thus, neither the local stability analysis, nor
the relevant computer simulations (4,5), result in any inconsist-
encies with the behaviors predicted by either asymptotic stability cn
(Fig. IA), or concentric limit cycles (Fig. 1 C), in the prescribed (4)
range of parameter values.

There is another area of critical uncertainty in Leonard's model. X

He (4,5) defines the parameters (Table 2) as the rate of loss in host .D
fitness per unit amount of pathogen fitness. However, he provides ".U
no evidence to support his choice of values (0.05•<s<0.02). In fact,
x21 is so sensitive to s (Eq. 6) that the results of the local stability
analysis for the nontrivial equilibrium point are inconclusive when
s is small, but show instability when s is large. Computer 16 c D
simulations starting at n = 0.7 and q = 0.8366 produce inward - %
spirals towards (n*,q*) for s = 0.8. This demonstrates that / - -
Leonard's model must have at least one stable limit cycle for these # -

particular parameter values (a = 0.0, c = 0.1, k = 0.3, t = 1.0, and s =
0.8). However, other sets of parameter values may induce different V/ / XI)

behaviors when s is large. Hence, both global instability (Fig. IB),
and concentric limit cycles (Fig. IC), represent possible forms of I I / -
phase plane trajectories for Eq. 5 for large s. %

At this stage in the analysis of Leonard's (4) model, three
behaviors: global asymptotic stability, (concentric) limit cycle(s),
and global instability (Fig. 1) must be entertained as possibilities. A
single stable limit cycle seems quite likely and is included under
'(concentric) limit cycle(s)'. Ultimately, the numerical values of Fig. 1. Types of qualitative behavior which have been proposed for simple
the parameters may determine which behavior the model (Eq. 5) gene-for-gene relationships: A, asymptotically stable nontrivial
enacts. equilibrium; B, unstable nontrivial equilibrium; C, stable limit cycle; and D,

Sedcole's model (Eq. 4) assumes that the genetic compositions of neutrally stable cycles. The position of the nontrivial equilibrium point is
host and pathogen populations change in a sequence of denoted by x.
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TABLE 2. Relative host fitnesses interacting with different pathogens a dq 2

Relative host fitnesses an dtI eq = (D-H)qq*2(-q*) > 0

when infected by:

v (avirulent) V (virulent) and • adn. = (B-A)n*(l-n*)2q* < 0.

Host genotype Frequency 1-n n aq dt eq

rr (susceptible) q2  l-s l-s(l-k)
R (resistant) l-q2 l-c-s(l-t) l-c-s(l-k+a) Kaplan (3) shows that because
ac = cost of resistance, s multiplied by pathogen fitness = disease severity. a dn +a adq =0

andt eq qdt eq

season (7). However, the models presented thus far implicitly and a dn X a dq - a dnj X a dqj > 0
assume that feedback occurs only at discrete intervals. Hence, the an dt eq aq dt eq aqdtI eq an dt eq

relative reproduction of host genotypes in these models is related,
not to the relative amount of disease suffered and the genetic
composition of the pathogen throughout the growing season, but the nontrivial equilibrium is locally neutrally stable.
rather, to the genetic composition of the pathogen at a single instant The existence of a Liapunov function constitutes mathematical
of the growing season. proof that the results of local stability analysis extend beyond the

An alternative set of assumptions leads to a third model. immediate vicinity of (n*, q*).
Suppose that any change in the genetic composition of one species A general expression for Liapunov functions of continuous gene-
immediately influences the genetic composition of the other. Then, for-gene relationships can be adapted from Goh (2):
if the populations are large, the discreteness introduced by
individual "births" and "deaths" is lost in the large total during the
growing season and both selection and feedback become V (n,q)= f(u) d_ u + [ fq(u) du (9)
approximately continuous processes. A model with continuous j, * g.(u) jq gq(U)
and reciprocal genetic feedback results. In this case the relative
reproduction of host genotypes depends on the genetic Here fx(U) and gx(U) are continuous functions of gene frequency,
composition of the pathogen throughout the growing season. He (u) an gx(u) a contin unctions ofsgene fncy,
However, this model has a weakness not present in either of the uZ (0,1), such that f<(u) T 0 when u • x*, respectiely, and gx(u)
discrete models: it ignores the discontinuities introduced by > 0. In addition, fx(u) and gx(u) allow V(n,q) - 00 as n or q - 0+ or'

seasonal and life-history phenomena in the life cycles of the two I-

species. To support the neutrally stable conclusion of the local analysis it
The continuous value corresponding to the discrete fitness, W, is must be shown that

m = logeW = lnW f(nq) f (n) dn fq(q) dq

converting the fitnesses of Tables 1 and 2 with this expression, a g (n) dt gq(g) dt

continuous version of the discrete models can be adapted from
Crow and Kimura (1): vanishes throughout the admissible phase plane. Hence, assume

Vý (n,q) = 0 and let g.(u) = u(l-u) and gq(u)= u2 (1 - u) so that, after
dn =n(l-n) [A(l-q') + substituting Eq. 7 into this expression for V (n,q), f,(u) = (D- H)u+
dn = 2 Bq2 H and fq(U) = (A-B)u'-A. Substituting these relationships into
dt Eq. 8 before integrating,

in which A = In l-k+a >0, and B =ln(-k) <0; [ + Aln. 2 + - -*_LqBin

and
This proves mathematically that this continuous version of

dq = q2 (l-q) [Dn + H(1-n)] (7) Leonard's model has behavior different from any previously

dt suggested: the maintenance of arbitrarily large elliptical orbits in
acceptable phase space. The size of the orbit is determined solely by
the initial conditions (Fig. 1 D).

l-x(1-k) 1-s In summary, it has been shown that three different models of the
in which D In > 0, and H = In -t)<0 same gene-for-gene relationship each produce a qualitatively

different type of stability behavior. This variation in behavior is not
the result of mathematical error; rather, it is due to differences in

In common with the models of Leonard and Sedcole, Eq. 6 assumptions made in constructing the models. In particular, the
implicitly assumes that each population has either non-overlapping assumptions concerning the reciprocity and continuity of feedback
generations or a stable age distribution. Age distributions are between host and parasite genetic compositions are responsible.
approximately stable when the rate of change in total population In other words, the conclusions of the models are not robust;
size is slow relative to the lifespan. they are extremely sensitive to assumptions about the genetic

The nontrivial equilibrium of Eq. 6 is: feedback between the populations. But note that the term'robust' is
not a comment on the logical methods. The same sure
mathematical rigor can produce both robust and nonrobust

(n*, q*) = [H/ (H-D), fA/ (A- / B)] (8) conclusions. Robustness is distinct from mathematics: it concerns
the sensitivity of the conclusions to the assumptions used to build

The values of the partial derivatives at (n*, q*) are: the model. In population genetics, only those familiar with the

a dn a dq observational phenomena and the related mathematical
- _-9- - dq = 0, approaches can determine the robustness of any particular model.

an dt eq aqdt eq In conclusion, it has been shown that the stability ofthe gene-for-
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