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Vanderplank’s r (7) has been used by plant pathologists to
evaluate data on yield loss (4), sanitation efforts (2), plant spacing
effects (6), fungicide effects, and cultivar effects (3). These cited
references are only random selections from the recent plant disease
literature, and should be considered as examples, not special cases.

Vanderplank (7, pp. 22-27) proposes two methods of estimating
r from sample data. One method is by a linear regression on time (t)
of the natural logarithm (In) of the proportion of the plant
population that is diseased (x) divided by the proportion that is
nondiseased (1 — x). The slope of the regression line is then taken as
an estimate of r. The other method is similar, but uses disease
proportion data collected at only two times, t, and t,. Those data
are again transformed by y = In[x/(1 — x)] and r is estimated by
r=(y2 — y1)/(t2 — ty). If our intention is merely to calculate an r
value, then there is no problem. But, if we wish to compare two or
more r values, or to compare the coefficients of determination of
several regression equations of In[x/(l — x)] on t, then a problem
arises. For these purposes, we must make assumptions about the
functional form of the distribution of the variables. Usually the
assumption is a normal distribution, and that is the tacit assump-
tion when testing hypotheses by Vanderplank’s method for
estimating the standard error of r (7, p. 26), or in statements about
confidence limits on the slope of the regression line when that
approach is used to estimate r.

But what is the distribution of y = In [x/(1 — x)]? Ashton (1)
showed that for large samples the expected value (E) of a function,
(g) of a random variable (x) is approximated by:

E[g(x)] = g[E(x)] (1
and the variance of that function is approximately

I Var(x) ()
x = F(x)

Var [gx)] = [ &
dx

in which the vertical bar indicates that the derivative is to be
evaluated at x = E (x). Let g(x) = y = In [x/(l — x)]
=lnx—In(l —x)

then E[g(x)] = In[E (x)] — In[1 — E(x)] \ (3)

and Var [g(x)] = [ —)I‘—+ = ) Var (x) (4)

x = Eix)

Thus, we have approximations for the mean and the variance of y
as functions of those of the parent distribution. Unfortunately, we
do not know the distribution of x. We can however, make
reasonable assumptions, and consider the implications of these
assumptions.

Assumption 1. If the disease is systemic, we might observe a
number of plants at random, classifying each as diseased or
nondiseased. Here, a reasonable assumption is that we are
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sampling from a binomial distribution. Under these conditions, the
sample proportion, p, of infected plants provides an estimate of
E(x), while the variance Var(x) is estimated by p(1 —p)/n=pgq/nin
which n is the number of plants sampled and q = (I — p).
Substituting these estimates in equations 3 and 4, we get:

X
I—=%

E(ln )=Inp—1Inqand

X | 1 Pq
=yt ey ey | PR L

xX=p

Var (In

=[-l_.+ I ]EE

P q n

= aoa (5)

Thus, the variance is a function of both the sample size and the
proportion of infected plants in the population.

Assumption 2. If we assume that our estimates of the proportion
of plants or tissue diseased follow a normal distribution with mean
« and variance o estimated by x and s°, we have, on substitution
in equation 3.

X
=

E (In )=InX —In(l —%)

and on substitution in equation 4.

X
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Therefore, even with the assumption of normality in the
distribution of x, the variance of In [x/(1 — x)] is a function of the
mean of the proportion of disease.

In linear regression, homogeneous variances are necessary to
make valid probabliity statements about the results. When the
variances are nonhomogenous, as they are under either assumption
| or 2 above, a weighted regression analysis is required (1.5) in
which the weights applied to the observations typically are the
reciprocals of the variance at the observed value of the variable.

It is a common (and necessary) practice to violate many of the
underlying assumptions when applying statistical techniques to
biological realities. Some of these assumptions tend to be of minor
importance. To test the importance of ignoring the heterogeneity of
variance in In [x/(1 — x)] when estimating Vanderplank’s r by
nonweighted linear regression, a computer simulation of sampling
an epidemic was constructed. The advantages of using a simulation



are that experimental error can be eliminated from the
observations and that the exact nature of the underlying
distribution is known. In weighted regression analysis the relative,
not the absolute, weight applied to an observation is important. By
comparing equation 5 to equation 6 with n and s* held constant and
setting the maximum weight equal to one, it can be seen that the
relative weight applied to an observation under assumption 2
would always be less than or equal to the relative weight which
would be applied under assumption 1. Therefore, if it were
important to weight observations under assumption I, it would be
even more important to weight them under assumption 2. In this
simulation, an epidemic of a systemic disease, was assumed to
progress at a rate of r = 0.46 per unit per day (cf 7, Fig. 3.1).

On the first day of the experiment, the proportion of diseased
plants was set at x = 0.005. Therefore, y = In [x/(1 — x)] = 5.293.
Each day thereafter, y was determined by adding r = 0.46 to the
previous value of y. Values for x after day one were computed from
x =¢'/(l X e’) (Table 1).

For each of the 11 successive days, 1,000 random numbers were
drawn from a population uniformly distributed between 0 and 1.
Each of these random numbers was considered to be a plant picked
at random from a population of plants. For each day’s sample,
those random numbers which were less than the value of x for that
day were considered to represent diseased plants. Those with values
higher than x were considered to be disease free. Thus, on each day,
i, we have a binomial distribution with parameter 8 = x;. The
proportion of the random numbers chosen on that day which were
less than x; provide an estimate, P, of the parameter . Weights
were computed as w = npq, the reciprocal of the variance, equation
5, and multiplied by the logit of ;.

A typical “experiment” is shown in Fig. 1A. The dotted line is the
theoretical line for r =0.46. The points are the sample proportions
transformed to logits. The solid line is the unweighted least squares
regression line, and the weighted least squares line is represented by
the dashed line. In this case, all three lines are similar; the weighted
regression line is nearly coincident with the theoretical line. Values
of r were 0.472 for the weighted regression and 0.503 for the
nonweighted regression.

Two hundred such experiments were conducted. Of these, the
extreme values for r computed by unweighted least squares were r =
0.400 and r = 0.564. The corresponding values computed by
weighted regression were r = 0.430 and r = 0.510. These “worst
case” examples are shown in Fig. 1B. Considerable departure from
the theoretical slope is evident in the unweighted least squares lines,
with the weighted regression lines much closer to the true value.

With the 200 sets of data, 100 paired comparisons of r were made
using a standard Student’s 7 test for homogeneity of regression. At
a = 0.05, nine of the comparisons indicated significant differences
when the regressions were nonweighted. By contrast, only four of
the weighted regressions showed significant differences. That is,
confidence statements about the weighted regression r’s are valid,
but those for unweighted regression are invalid, since twice as many
comparisons of random variation were determined to be
significantly different from one another as the chosen « level would
suggest.

TABLE 1. The progress of a simulated epidemic of 11 days with an r=0.46,
x = the proportion of diseased plants

Day X In [x/(1—x)]
1 {005 —5.293
2 008 —4.833
3 012 —4.373
4 .020 —-3.913
5 031 —3.453
6 .047 —2.993
7 073 —2.533
8 12 -2.073
9 .166 —1.613

10 .240 —1.153

11 334 —0.693

Similar experiments with the two-point approach gave
indications of significant differences which were in agreement with
the chosen level for the r test. The two-point approach requires
several estimates of p at each of the two sampling times. Each
estimate was based on the examination of 1,000 “plants” as
described above. An equal number of estimates was made at each
sampling time. Valid results were obtained when seven or only
three estimates were made with the true infection levels set at .009
and .443. Results also were correct when seven estimates were made
at .009 and .250 relative incidence.

Vanderplank’s (7) admonition to interpret estimates of r with
caution has not always been heeded. The previous paragraphs have
shown that comparison of nonweighted linear regression estimates
of r’s will show significant differences where none exist. The use of
weighted linear regression or the two-point estimation method
avoids this problem. It should be emphasized, however, the two-
points method must be based on the means of several independent
samples at each of the two points, since under these circumstances
the central limit theorem applies. Weights were calculated herein as
the reciprocal of the variance of the distribution, specifically, w; =
nipiqi. Here nip;, and q; were known. In experimental work, the
weights can be computed by first estimating p; using nonweighted
linear regression, then recomputing the regression with weights
based on this estimate pi, of pi as Wi = nif§..
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Fig. 1. Linear regressions of the logit transformation of plant disease
incidence from a simulated epidemic over time. A, A typicalexample of the
200 epidemics generated. B, The most divergent pair of the 200 epidemics
generated; ie, that simulated epidemic which gave the maximum estimate
for r and that which gave the minimum estimate for r. Legend: solid line =
unweighted least squares line; long dashes = weighted least squares line; and
short dashes = true epidemic.
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