
Letter to the Editor

Selection Pressures and Plant Pathogens:
Stability of Equilibria

J. R. Sedcole

Graduate Research Assistant, Department of Statistics, Iowa State University, Ames, IA 50011.
Journal Series Paper J-8927 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa.

Project 1669. Partial support by National Institutes of Health Grant GM 13827.
The author wishes to acknowledge the helpful suggestions of Edwark Pollak and James L. Cornette, and the

encouragement of J. Artie Browning.
Accepted for publication 25 April 1978.

Leonard (3) developed a mathematical model to This is misleading. Equation 1 implies that there is no
describe the dynamics and equilibria of the genotypic change in host gene frequency, and that equilibrium
frequencies of host resistance genes and pathogen conditions are obtained for only the pathogen gene
virulence genes, given various parameters of selection frequency, given a fixed host gene frequency, Equilibrium
intensity and fitness of host and pathogen. Examination is reached when n = 0, or n = 1, or if the host gene
of the model, however, shows that the equilibrium is frequency is fixed at q = [ I - k/ (a + t)]1/ 2

; i.e., I - q2 =k/
unstable; this carries implications concerning the validity (a + t), then the pathogen gene frequency will remain
of Leonard's conclusions. For this discussion, we shall unchanged for any value of n between 0 and 1. This
develop Leonard's model and examine it from two development does not say anything about equilibrium
viewpoints, analytical and numerical, frequencies of the resistant host genotypes.

We begin by defining the following: n is the frequency Leonard's model for selection in the host populationof virulence gene V in the haploid pathogen; m is the introduces two further parameters, c, the cost to the
frequency of pathogen avirulence gene v, so that n + m = pathogen of the resistance gene, and s. The concept of s
1; p is the frequency of dominant resistance gene R in the gives us pause. Having previously defined, on page 207,
diploid host; q is the frequency of recessive susceptible fitness as ". . . a measure of the reproductive success of
gene r, (p + q = 1); t is the effectiveness of resistance (0 < t individuals. . .", Leonard states on page 211 "The term s
<, 1), so for genes expressing high resistance, t is about I; k in Table 3 represents severity of disease. The actual loss in
is the cost of virulence to the pathogen of the virulence fitness due to disease in the host is also proportional to the
gene in a given avirulent population; and a is the fitness of the pathogen infecting the host." This
advantage conferred to the virulent pathogen genotype assumption, made to simplify the model development,
on resistant host genotypes relative to the avirulent while not unreasonable as an approximate description,
pathogen on the nonresistant host. may be strictly invalid; consider, for example, the case ofHence, Leonard develops the following table (Table 1). tolerant cultivars that appear to be susceptible but yield as

Now we have (in Leonard's notation) that the if they were resistant.
frequency for the genotypes of the next cycle of pathogens If we grant this assumption we arrive at Leonard's table
is of the relative fitnesses of host genotypes (Table 2).

Assuming that the entire host population is attacked,nn [1 - k (1 - q2) a] we have the frequency of the genotype of the next cycle of
1 -(1-q 2 ) t + n [( -q 2 ) (a + t) - k] hosts to be

Eq. 1
From this, Leonard derives that the change in n for one p = p [1 - c - s (1 - t) + ns (k - a - t)]
cycle is 1-s nsk + (1- q2) [ts - c- ns (a + t)]

n (1-n) [(-q 2) (a + t)- k] Eq. 3
1- (1 - q2) t + n [(1 - q2) (a + t) - k] from which Leonard derives the change in frequency of p

to be
Eq. 2 E pq2 [ts - c - ns (a + t)]

Leonard claims that "If the host and pathogen I - s + nks + (I - q2) [ts - c - ns (a + t)]
populations are allowed to come to equilibrium, so that
An = 0, Eq. 4

I - q 2 = k/ (a + t) . . which is zero at equilibrium. The correct interpretation is
that A p = 0 if p = 0, p = 1, or, if the pathogen gene

00032-949X/78/000 168$03.00/0 frequency is fixed at n = (ts - c)/ (ts + as), then A p = 0 for
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fact, n is implicitly assumed to be fixed, but note that
Analysis of nontrivial equilibrium: Analytical

approach.-We may now consider the nontrivial nj + 1 = g [f(pj, nj), ni] = h(pi, n1);
equilibrium point given by the two equations

i.e., a different function of pj and nj.
n = (ts - c)/(ts + as) (ts > c) Some discussion of the stability of equilibria, with

examples in biology, is given by Lotka (4); however, for
I - q2 = k/(a + t) (k < a + t). completeness, we shall develop the following for the host-

Eq. 5 pathogen genotype case. Consider first the
approximation using Taylor's theorem for the multi-

We shall use n, m, p, and q to denote the nontrivial variable case [which may be found in any advanced

equilibrium frequencies, and nj, inj, pj, and q1 to denote calculus text; e.g.; Fulks (2)],

frequencies for the jth cycle. Thus f(P, n) f(p, n) + (p - df (p, n)

pi [I - cp - s (I - t) + njs (k - a- t)] f(p n) d p
1 - s + nqsk + (1- _q2) [ts- c- nis (a + t)]- + (nj - n)

dn
Eq. 6

and which leads to the form,

nj + nj [I - k + (-_ qj2) a] ( + p (' + p P (-pn2) d=-p a n
1-(1-q 2 )t+n [(I - qj') (a + t) Eq7 ni+2 n) + dg d g + nI-

Eq. 7 d n)

We can express this as
The matrix of partial derivatives, called the Jacobian, is

Pi + i = f(pj, nj) and nq+ I = g(pj, nj) evaluated at the equilibrium point. The approximation
holds if Pi, nj are close to the equilibrium. Let pi - p = 60, ni

where the f and g indicate two functions of the variables pj - n = e i, be the deviations from the equilibrium of the
and ni. Thus, for the equilibrium values, frequencies at the jth cycle. The expression may then be

written as
p = f(p, n), n =g(p, n).

Parenthetically, we note that we are assuming that the (i + 4 wh (X tJ
pathogen affects reproductive capacity, not viability, so + = X where X is the Jacobian,
that p and n remain unchanged during each cycle. If
infection affects viability, the model might better be
written or d+ 1 = X dj where dj is a column vector.

Pi = f(pj, nj) and nj 1 = g(pj + 1, nj), This is in the form that Bodmer (1), amongst others,

Eq. 8 discusses. The stability of the system is indicated by the

TABLE 1. Relative fitness of pathogen genotypes on susceptible and resistant hosts

Relative fitness of pathogen genotypes:

Pathogen genotype on rr (susceptible) Rr, RR (resistant)

Frequency q2  2pq q2

v (avirulent) m I I - t
V (virulent) n 1 - k I - k + a

TABLE 2. Relative fitness of host genotypes interacting with avirulent and virulent pathogens

Relative fitness of host genotype afflicted
Host genotype by avirulent (v) or virulent (P) pathogen

Frequency m n

RR (resistant) p12 -I-c- slk+a)
Rr (resistant) 2pq 1
rr (susceptible) q 1 - s 1 - s (1 - k)
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latent roots (or characteristic roots or eigenvalues) of X. show instability by a numerical approach. Write a
Generally, if the dominant root is less than 1 then the computer program for the recursive expressions Eq. 6 and
equilibrium is stable, and vice versa. Parenthetically, we 7, start with values of p0, no close to, but not equal to, the
may note that because we are using an approximate equilibrium point and examine a printout, or a graphical
analysis, if the dominant root is very close to or equal to 1, display of (pi, ni), (P 2, n 2) ...... .for a number of
then the analysis is inconclusive, iterations. While this does not "prove", in the

The roots may be complex, of the form X = a + if8 where mathematical sense, the stability or otherwise of the
= _ 1 and neither a nor/3 is zero. In this case, the system equilibrium, it does provide data that can be clearly

will spiral inwards if (a 2 + /32)1/2 < 1 and outwards if(a 2 + followed. We shall consider that an end point is reached/32)1/2> 1. when nj or pj becomes sufficiently close to 0 or 1 that
To examine the stability of this specific case, we stochastic effects ensure a fairly high probability of

differentiate the functions represented by Equations 6 fixation. As a caution though, we might point out that the
and 7 with respect to p and n, and determine their values end point of an unstable system may be somewhat
at the equilibrium. affected by the numerical accuracy of the computation,

especially where 1,000 or more iterations may be
df = 1 necessary. Little emphasis should be placed either on the

exact number of iterations required to reach the enddp eq point, or on the value of nj or pj that is not zero.
Figure 1 plots the last spiral of the system for a = 0.1, c

= 0.01, k = 0.3, s = 0.2, and t = 1.0. The program started
ps (k - a - t) with values of pa, no within 0.1% of the equilibrium values,

df = = x12, say, and took about 1,800 iterations to reach the end point.n I - s ± nsk Each spiral took about 70 iterations.

dg 2qn (I - n) (a + t)2  
CONCLUSION

dg a+t-kt
dp eq In misinterpreting the implications of Equations 2 and

4, Leonard clearly errs, and the conclusions he draws
concerning the conditions for stabilizing selection are

dg =1. invalid. Furthermore, the correct interpretation of his
dn model, demonstrated here, shows that it is inherentlyeq unstable and is not, therefore, an explanation of

stabilizing selection, such as that observed in the stable
host-pathogen systems existent in the "fertile crescent"

We now consider the characteristic roots of the area of the Middle East. Models that include, for
Jacobian:

1.01 x12

x21 1 c 0u- o.8 -
Here the solution for X is obtained from the equation o

(l-X)2 -x 12x 21 =0. 0.6 -
So X I ± (X2 1 X12) 1 1  

Wt
=" 0.4 -

and the dominant root is X = 1 + (X21 X12)1/2 i 0_

2pqnms (a + t)2 (k - a - t) 0.2 -where X21 X12 = +
(1 - s + nsk) (a + t - kt)

0.0 I0.0 0.2 0.4 0.6 0.8 1.0
which is negative for any values of a, k, s, and t that give a
nontrivial equilibrium value. Therefore, the dominant ni , FREQUENCY OF Vroot of the system is complex with (a•2 + /32)1/2 > 1, so thesystem spirals outwards from the equilibrium. The Fig. 1. Numerical analysis of the model. Equations 6 and 7 (seeequilibrium point therefore is .unstable. text) were used to calculate respectively the frequency nj of theequililarium weoinsowt therefore is qun ats (virulence gene V in the haploid pathogen, and the frequency pj of[Similarly we can show that the equations (Eq. 8) lead the dominant resistance gene R in the diploid host. The initial
to a Jacobian with latent roots such that [a2 

+ #32]112 = 1.] values were within 0.1% of the nontrivial equilibrium (marked
Numerical approach.-The analysis establishes that +). The graph shows the locus of the last cycle of iterations before

the equilibrium point is not locally stable. We also can n, became unity.
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