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Multiline cultivars are being tested or developed in
several places (3). Their epidemiological effectiveness has
been established empirically (4) and theoretically (1, 9).
The validity of this important aspect of multilines is not
doubted, nor is it the subject of this discussion. Rather,
this letter is concerned with our lack of theoretical
understanding of the long-term fate of multilines. The
questions are: Will multilines select complex races of a
pathogen (those capable of infecting all or most of the
components)? If so, how complex will such races become?
The first question was examined most thoroughly by
Leonard (5, 6) who outlined the problem well, but who
chose to begin with complex empirical data. Because of
this, his model was not succinct, and it is difficult to
generalize from his example. It is clear to me from his
discussion, however, that Leonard had a good
understanding of the effects a multiline might have on the
pathogen population. He found that carefully controlled
mixtures of components, based primarily on level of
stabilizing selection associated with each virulence gene
of importance to the pathogen, would be necessary if
multilines are to be effective in the long run. His work
may not have received sufficient attention. To my
knowledge, the second question has not been explored at
all.

Though some unpublished evidence exists that
multilines are stabilizing pathogen populations (2) and
empirical evidence is beginning to be collected, nothing
more has been done theoretically, aside from some
enlightening but esoteric mathematical work by Mode
(8). There is room in this area now for some further and
simpler induction. Maximum progress in any field should
occur with a balance between experimental and
theoretical research. A thorough understanding of the
multiline concept should precede any major move toward
their large-scale use. To do otherwise is dangerous.

The proposed mathematical model with two variations
is quite simple. It is replete with assumptions that are as
realistic as possible while still allowing simplicity. Its
purpose is to stimulate further thinking as well as to

- clarify some ideas which have been expressed in words,
but never established in more rigorous ways. The model
also might represent a simple beginning for
understanding how equilibria are maintained in natural
host-parasite systems.

Whereas the reality of some portions of such a model
can be questioned, it should prove useful as a starting
point to which more realistic but complicating factors can
be added. The assumptions of the first variation of the
model are:
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(i) The multiline is composed of n components, each
containing a single resistance gene. Each component
occurs with frequency 1/n.

(ii) Each resistance gene is overcome by a race with the
matching virulence gene (v-gene). Races with all possible
combinations of v-genes exist.

(iii) If a race does not possess the matching v-gene, it
will not reproduce on the resistant host.

(iv) If v-genes reduce within-component fitness, they do
so equally and additively; i.e., if by definition, a simple,
one-gene race has a fitness of 1 on the component which it
infects, more complex races have fitnesses of 1 —(m—1)s
on the components on which they are able to reproduce,
where m= the number of susceptible components,and s =
the within-component reduction in reproduction
associated with a single v-gene (the selection coefficient).

Whereas a single-gene (simple) race will infect 1/n
plants in the stand, a two-or-more-gene (complex) race
will infect m/n. Overall reproduction of a complex race
R., can be expressed as a proportion of susceptible plants
multiplied by within-component fitness:

Ry = (m/n) [(1-(m—1)s]
This is better expressed in terms of reproduction of the

simple race, R,, which, as has been defined, has
susceptible proportion of 1/n and fitness of 1. Hence:

Ra_ (m/n)[1 = (m=1)s]
R, I/n (1)

or
R = m [I—(m—1)s]

Complex races which reproduce better (R >1) than the
original simple races will be selected for, and will
eventually replace the simple races. To determine the
degree of complexity which will maximize R, one needs
only to differentiate with respect to m, and set the
derivative equal to zero:
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or, in another form, maximum reproduction occurs in the
race with complexity of
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This simply means that until this equilibrial level of m is
reached, selection should favor (stepwise) increasing
complexity. Figure 1-A illustrates this for several levels of
s. It shows increasing reproduction as the v-genes increase
in number until the maximum value of R (where —gn%z 0)
is reached, after which stabilizing selection operates
against further gains in virulence. An important point is
that relative reproductivity of simple and complex races is
a function of s, but nor of n, the number of component
lines in the multiline; the maximum value of R will be
associated with a given m whether there are five or 50
component lines. Nevertheless, the number of component
lines should be of ultimate importance epidemiologically.
Not only will a greater number of lines slow progress
toward increasing complexity by slowing the epidemic, it
will also determine the impact that the moderately
complex races have on the multiline’s effectiveness. This
can be illustrated. Figure 2-A presents the levels of s
required to prevent complex races, able to infect more
than half of the component lines, from becoming
established. These are inversely proportional to n,
meaning that greater levels of stabilizing selection will be
necessary to curb this shift if fewer component lines are
present. Also, note that the greatest changes in required
values of s occur to the left, when the number of lines is
small.

The second model variation differs from the first only
in the manner in which fitnesses due to virulence genes
combine. They are now assumed to combine
multiplicatively (so that individual fitnesses associated
with the genes are multiplied) rather than additively. This
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Fig. 1A, B). Relative reproductive ability on a multiline
cultivar of complex pathogen races, having more than one
effective virulence gene, expressed in terms of the reproduction
of simple (one virulence gene) pathogen races for A) additive
combinations of fitness and B) multiplicative combinations of
fitness. Curves for several values of s, the within-component
reduction in fitness which is a measure of stabilizing selection,
are shown. Maxima in R are circled.
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is probably a more realistic assumption (7), but one
which, as shall be shown, complicates the model
somewhat. The within-component fitness now can be
generally expressed as (1—s)™', using the same symbols
and other assumptions as in the first variant. Using
parallel arguments as with the additive variant, the
overall reproduction of complex in terms of that of simple
races will be:

R =m (1-s)™"

This function results in a considerably more complex
derivative,

5 = [m In(1=s) + 1] (1=s)""

Figure 1-B represents, as in Fig. [-A, the reproductive
capabilities of complex races relative to those of simple
races for various values of s, when fitnesses combine
multiplicatively, Note that an important difference is
illustrated: if fitnesses are multiplicative, more complex
races will occur for a given value of s than if selection
coefficient are simply additive. Multiplicative fitness
represents a case of “diminishing returns”, whereby each
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Fig. 2-(A, B). The amount of within-component reproductive
(fitness) disadvantage or stabilizing selection (s), associated with
each pathogen virulence gene that is necessary to offset the
selective advantage of a race that can attack half of the n
component isolines in multiline cultivars for A) additive
combinations of fitness and B) multiplicative combinations of
fitness.
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added virulence gene detracts less than the one before it.

In Fig. 2-B, with multiplicative fitness, the amount of
stabilizing selection necessary to offset the reproductive
advantage gained by a race capable of attacking half the
components of a multiline is plotted as a function of n, the
number of components. The plot is similar in shape to
that of the additive variant, and except for very low n
values, shows higher levels of required s than with
additive combinations.

The model says nothing about the expected rate of
establishment of complex races. This will depend on
many factors relating to the nature of the disease. For
some polycyclic pathogens, such as rusts, it seems likely
that the population should shift rather rapidly.

Perhaps the most unrealistic facet of the model is the
simplistic treatment of the parameter s. Stabilizing
selection, if it even exists for all v-genes (9) probably will
not be the same for different v-genes (4, 9). Nothing is
known about how the stabilizing selection effects of
genes will combine. Additivity of fitness is a useful
starting assumption for two reasons. First, it is easy to
handle mathematically and conceptually. It has served as
a useful preliminary model. This is poor justification if the
assumption is quite unrealistic, which clearly it is at high
levels of m or s (where fitnesses of less than 0 are possible).
But at more likely small m or s levels, the additive variant
is not so unrealistic, and provides an upper limit; viz.,
nondiminishing decrements of fitness are probably the
best (in terms of being economically most favorable) we
can expect. In view of our lack of knowledge about how
fitnesses combine, the additive case should not be
dismissed. Other possibilities involve diminishing fitness
reductions, of which the multiplicative case is but one.
More rapidly diminishing decrements are also likely in
which case even more complex races will be possible for
each level of s than shown by the multiplicative variant.
Modification of this or any other aspect of the model,
though readily done, will quickly increase its complexity.
In such a case, the importance of stochastic methods
becomes obvious. The intent here has been to set forth a
basic mathematical treatment which is clear enough to
illustrate some possibilities. The model identifies the
importance of (i) being able to precisely measure
pathogen fitness and (ii) understanding how fitnesses
combine (including understanding the genetic basis of
stabilizing selection).

As most people who have discussed potential selection
for race complexity in multilines have indicated,
resistance genes will not be useful in multilines if the races
capable of overcoming them are not subject to stabilizing
selection. It is obvious that such races would enjoy
increased reproduction, since they pay no penalty for
possessing extra virulence. In the model, m of the best-
reproducing race is without limit if such is the case for all
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R genes employed; i.e., the most complex races will
reproduce best.

That stabilizing selection will be necessary for the
success of multilines is fairly obvious. Assuming that it
occurs, both variants of the model show two things which
are not so obvious: that if the level of stabilizing selection
is similar to that reported by Leonard (5) or van der
Plank (9), then there will be an upper limit to complexity,
and that relative reproductive advantage of simple and
complex races will be independent of n, the number of
multiline components.

A modification of the model to allow the addition of
susceptible components shows, as Leonard (5) also
concluded, that for a given value of s, complexity of the
best-reproducing race will be less than if susceptible
plants are absent. For example in the additive case,if I /n
of the multiline has no resistance genes, then one less v-
gene will be present in the best-reproducing race. There
will also be more direct competition between simple and
complex races on the susceptible plants, so that removals
might play a more important role in such a situation.
Though it would have a stabilizing effect on the pathogen
population, addition of a susceptible component would
have an adverse epidemiological effect. I believe that only
experimental evidence will tell us the optimum
composition of a multiline. Models such as this however,
might narrow the range of possibilities to be explored
experimentally.
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