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ABSTRACT

Five isolates of Erwinia amylovora, two isolates of
avirulent E. amylovora and three isolates of E. herbicola, an
avirulent Erwinia sp., appear related on the basis of
aminopeptidase profiles. The profiles were derived from the
hydrolysis of 27 aminoacyl-B-naphthylamides and j-
naphthylamides of phosphate, sulfate and acetate after
incubation periods of 4 and 24 hours. Differences in
hydrolysis were not apparent in replicate treatments and
differences in hydrolysis by isolates within each of the two
species were < 4% indicating that aminopeptidase profiles
offer a rapid, reproducible means of microbial identification
to supplement morphological and cultural criteria.

Qualitative and quantitative differences in the hydrolysis of
several aminoacyl-B-naphthylamides were evident among
the three bacteria. Virulent E. amylovora hydrolyzed glycyl-
and alanyl-g-naphthylamides, whereas neither avirulent E.
amylovora nor E. herbicola hydrolyzed glyeyl-B-naphthyl-
amide. Erwinia herbicola hydrolyzed alanyl-S-naphthyl-
amide less readily than did virulent E. amylovora. Avirulent
E. amylovora did not hydrolyze alanyl--naphthylamide.
Avirulent E. amylovoraand E. herbicola hydrolyzed f-naph-
thylamides of phenylalanine and tyrosine more rapidly than
did virulent E. amylovora.

Phytopathology 65:1206-1212

The identification of bacteria by classical
microbiological techniques is a lengthy procedure
involving the determination of morphological, cultural,
physiological and pathogenic characters. Alternatives,
such as phage typing (7) and utilization of gas
chromatographic (16, 31), electrophoretic (12, 26), and
phosphorescent (1) techniques are not sufficiently refined
nor widely accepted. Deoxyribonucleic acid
hybridization has been used to determine overall
relationships between species (4), but sufficient guidelines
are not available to correlate genetic and molecular
information to taxonomic groupings.

Westley et al. (32) proposed using aminopeptidase
profiles to identify Bacillus spp. and other bacteria. The
procedure is based on the measurement of fluorescence of
enzymatically released B-naphthylamine from B-naph-
thylamides. Fluorescence is linear with concentration
allowing both quantitative and qualitative evaluations.
Bacteria are distinguished by their ability to hydrolyze a
series of B-naphthylamides which are recorded as specific
“profiles” for each bacterium.

On the basis of aminopeptidase profiles, Huber et al.
(17) rapidly distinguished race 1 from race 2 of
Pseudomonas phaseolicola. Krawczyk and Huber (19)
separated Erwinia amylovora, Xanthomonas campestris,
Pseudomonas tabaci, and a saprophytic Pseudomonas
sp. by their aminopeptidase profiles, and Mulczyk and
Szewczyk (25, 28) distinguished various Enterobacter-
iaceae on the basis of their pyrrolidonyl peptidase
activity.

Environmental factors affect aminopeptidase profiles
(17, 32), and Krawczyk and Huber (19) standardized the
procedure in terms of growth media, temperature,
incubation time, inoculum density, and added cofactors.
They concluded that there appeared to be sufficient
latitude in all of these factors for this technique to be

easily adapted for routine microbial identification.

MATERIALS AND METHODS.—Virulent Erwinia
amylovora (Burr) Winslow et al. (W-LV-2, M-W-1) and
Erwinia herbicola (Lohnis) Dye (M-Y-1), and avirulent
Erwinia sp., were isolated from lyophilized, naturally
infected apple buds (Purdue University, O’'Neall Farm),
and a change in the virulent E. amylovora isolate M-W-1
yielded avirulent isolate (M-Av-1). Avirulent isolate (E-8)
of E. amylovora was obtained from R. N. Goodman,
University of Missouri, and virulent streptomycin-
resistant E. amylovora isolates (E. A. Smooth, 180 SR,
410 SR) from H. L. Keil, United States Department of
Agriculture, Beltsville, Maryland. Erwinia herbicola
isolates (ISO 57, ZP-1) were obtained from E. Klos,
Michigan State University. Isolate ZP-1 was originally
obtained from D. W. Dye, Auckland, N. Z. by E. Klos.

The identities of isolates were verified by comparison of
their characteristics with descriptions in Bergey’s Manual
(3), Dowson (5) and Dye (6). Emphasis was placed on the
fermentation of carbohydrates, as these tests are
important in differentiation of the Enterobacteriaceae
(3).

Aminopeptidase profiles of the isolates were
determined by the method of Krawczyk and Huber (19).
Bacteria were grown on nutrient agar slants for 36 hours,
and suspended in 0.05 M tris-HCI buffer, pH 8.0. The
bacterial concentration was standardized spectrophoto-
metrically (540 nm) to approximately 3.7 X 107 cells/ ml.
One-tenth milliliter of bacterial suspension was dispersed
into each substrate (Table 1) and maintained at room
temperature (approximately 22 C) until hydrolysis of the
B-naphthylamides was determined. Naphthylamides
(obtained from Calbiochem, San Diego, California, The
Nutritional Biochemicals Co., Cleveland, Ohio, and
Sigma Chemical Co., St. Louis, Missouri) 2 X 10°M,
were dissolved in 0.05 M tris-HCI buffer, pH 8.0, and
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refrigerated until used. B-naphthylamine in tris-HCI
buffer and buffer alone were also inoculated to determine
the maximum fluorescence obtainable with complete
hydrolysis and background fluorescence, respectively.

Aminopeptidase activity was determined
fluorometrically by measuring the B-naphthylamine
released using an Aminco fluoromicrophotometer with a
Corning 7-60 narrow-band-pass primary filter and
Wratten 47-B narrow-band-pass secondary filter. A 0.3
neutral-density filter was also used in the primary filter
position to keep within limits of the photomultiplier tube.

To determine the effect of incubation time on
hydrolysis, substrates were inoculated with virulent (W-
LV-2) or avirulent E. amylovora (E-8) and percent
hydrolysis determined 4, 8, 12, and 24 hours later.
Hydrolysis was evident by 4 hours, and 4- and 24-hour
incubation periods were used to determine the amino-
peptidase profiles for all isolates. In all experiments, two
replicates were used for both incubation periods for each
isolate. There were no significant differences between
replications of a single isolate. Variation between mean
values for observations within each bacterial species were
+ 1% for hydrolysis values < 20% and + 4% for values >
20%. Therefore, all data are presented as average percent
hydrolysis by isolates of each species. Differences in the
means of the quantities of -naphthylamides hydrolyzed
after 4- and 24-hour incubation periods by five isolates of
virulent E. amylovora, two isolates of avirulent E.
amylovora, and three isolates of E. herbicola, were
determined by Duncan’s multiple-range test.

RESULTS.—The characteristics of the virulent and
avirulent isolates (Table 2) of E. amylovora were similar
to those presented in Bergey's Manual(3) and by Dowson
(5). The characteristics of the E. herbicola isolates (Table
2) were in accord with data by Dye (6).

Differences in hydrolysis of B-naphthylamides were
evident after 4 hours of incubation, and these differences
only changed quantitatively with increased incubation
time (Fig. 1). Quantitative differences between values
presented in Fig. | and those presented in Fig. 2and 3 are
due to the use of substrates at 10™ M as compared to
substrates at 2.5 X 10° M,

The profiles for these bacteria are similar; however, a
few marked differences in the hydrolysis of some S-naph-
thylamides are evident (Fig. 2 and 3). Virulent E.
amylovora readily hydrolyzed glycyl-and alanyl-B-naph-
thylamides, whereas neither avirulent E. amylovora nor
E. herbicola hydrolyzed glycyl-B-naphthylamide. E.
herbicola hydrolyzed alanyl-B-naphthylamide less
readily than did virulent E. amylovora. Avirulent E.
amylovora did not hydrolyze alanyl-B-naphthylamide.
Avirulent E. amylovora and E. herbicola hydrolyzed -
naphthylamides of phenylalanine and tyrosine more
rapidly than did virulent E. amylovora. The comparison
of profiles by Duncan's multiple-range test (Table 3)
shows greatest similarities in hydrolysis of substrates by
avirulent E. amylovora and E. herbicola, and most
differences are apparent in the hydrolysis of substrates by
the virulent bacterium as compared to the avirulent
bacteria. The decreasing order in hydrolysis of different
amino-g-naphthylamides by the three bacteria is
presented in Table 4.

DISCUSSION.—The aminopeptidase profiles (Fig. 2,
3) indicate that the three Erwinia are related. In general,
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TABLE 1. B-Naphthylamides used to determine profiles of
virulent and avirulent Erwinia amylovora and Erwinia herbicola

B-naphthylamides Abbreviation

L-Alanyl (ALA)
L-Arginyl (ARG)
Benzyl-L-Arginyl (BANA)
L-a-Aspartyl (a-ASP)
L-B-Aspartyl (B-ASP)
L-Cysteinyl (CYS)
_-a-Glutamyl (e-GLU)
L-y-Glutamyl (v-GLU)
L-a-Glutamyl-L-Phenylalany! (GLU-PHE)
Glycyl (GLY)
Glycyl-Glyceyl (Gly-Gly)
L-Histidyl (HIS)
L-Hydroxyprolyl (HPRO)
L-Leucyl (LEU)
L-Isoleucyl (ILEU)
L-Lysyl (LYS)
L-Methionyl (MET)
4-Methoxy-Leucyl (4M-LEU)
L-Phenylalanyl (PHE)
L-Prolyl (PRO)
L-Pyrrolidonyl (PYR)
L-Seryl (SER)
L-Threonyl (THR)
L-Tryptophyl (TRY)
L-Tyrosyl (TYR)
L-Valyl (VAL)
B-Naphthylamine (B-NAP)
Tris-HCI buffer blank pH 8.0 (T-BUF)
B-naphtylamide acetate (ACE)
B-naphthylamide sulfate (SUL)
B-naphthylamide phosphate (PHO)

virulent E. amylovora hydrolyzed greater amounts of
each substrate than did avirulent E. amylovora or E.
herbicola. No differences in aminopeptidase profiles were
apparent between streptomycin-resistant and -susceptible
isolates of virulent E. amylovora.

Statistical analysis of the data (Table 3) indicated
significant differences in the hydrolysis of many
substrates by the three bacteria. Comparison of these
differences with the aminopeptidase profiles of the
bacteria after both 4- and 24-hour incubation periods
(Fig. 2, 3) indicates that most differences are quantitative,
small, and that the general shape of the profiles for all
three species are strikingly similar. Comparisons of these
profiles with those of other bacterial genera (17, 19, 32)
indicate that bacteria can be readily distinguished from
each other on the basis of aminopeptidase profiles, and
the similar profiles generated by the three bacteria used in
these studies are indicative of a close relationship.

Billing and Baker (2), in the course of diagnostic work
with fire blight, found a yellow-pigmented saprophytic
organism which was similar to E. amylovora. They
considered it to be a member of an ill-defined Lathyris -
herbicola group within the genus Erwinia. Smith and
Powell (27) also recovered yellow isolates from fire blight
cankers which were non-pathogenic on apple and
suggested that these isolates were probably the same
species as those of Billing and Baker (2). The similarities
that these workers observed between E. amylovora and
the yellow isolate, and the classification of these yellow
isolates as E. herbicola by Dye (6), with the



TABLE 2. Production of acid from carbohydrates by, and some other characters of, avirulent and virulent Erwinia amylovora isolates and isolates of Erwinia herbicola

E. amylovora isolates’

E. herbicola 1solates

Test" E. amylovora® W-LV-2 M-W-1 E. A Smooth 180SR  410SR  M-Av-] E-8 E. herbicola" M-Y-1 ZP-1 Iso 57
Production of acid from:
Dextrose A A A A A A A A A A A A
Glycerol (Basal Broth) A A A A A A A A A A A A
Glycerol (Nut Broth) A A A A A A A A A A A A
Lactose - = = - - - - = A - A -
Mannose A A A A A A A A A A A A
Salicin A A A A A A A A A - A A
Starch - . . = - = = = - = - -
Sucrose A A A A A A A A A A A A
Xylose - - - - - - - - A A A A
Hydrolysis of gelatin + + + + + + + + + + - + +
Production of NO: from NOs - - - + + + - - + + + -
Lactose in an inorganic
nitrogen medium with
bromocresol purple A, AG, or- A A A A A K K nt K K K
Gram stain - - - - - - = - = = - -
Pigment white white white white white white white white yellow yellow yellow  yellow
*E. amylovora isolates W-LV-2, M-W-1, E. A. Smo.oth, 180SR and 410SR are virulent, while M-Av-1 and E-8 are avirulent.
®A = Acid reaction; — = no reaction; K = Alkaline reaction; nt = not tested.

‘From Bergey's Manual (3) and/or Dowson (5).
“From Dye (6).
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Fig. 1-(A to C). Hydrolysis of A) alanyl-, B) phenylalanyl-,
and C) aspartyl- S-naphthylamides by virulent (#——e) and
avirulent (o——o) Erwinia amylovora as compared to time of
incubation. Values are averages of two replicate observations for
each bacterium at each incubation period.

acknowledgement that organisms in the “herbicola”
group share many characters with those in both the
“amylovora” and “carotovora” groups, suggests that E.
amylovora and E. herbicola are closely related. This close
relation between E. amylovora and E. herbicola is
supported by the aminopeptidase profiles obtained from
these bacteria. The strikingly similar profiles of avirulent
E. amylovora and E. herbicola further suggests that
differences in the profiles of virulent E. amylovora as
compared to those of the two avirulent bacteria may
relate to the virulence and/or avirulence of these
organisms.

Several virulent Agrobacterium spp. lose virulence
after successive passages on media containing glycine

T
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Fig. 34 A to C). Aminopeptidase profiles of A) virulent and B)
avirulent Erwinia amylovora and C) Erwinia herbicola after 24
hours of incubation. Values are averages of five (A), two (B) and
three (C) isolates. The S-naphthylamide substrates are, left to
right, L-Alanyl, L-Arginyl, Benzyl-L-Arginyl, L-a-Aspartyl, L-
B-Aspartyl, L-a-Aspartyl, L-Cysteinyl, L-a-Glutamyl, L-y-Glu-
tamyl, L-a-Glutamyl-L-Phenylalanyl, Glycyl, Glycyl-Glyeyl, L-
Histidyl, L-Hydroxyprolyl, L-Leucyl, L-Isoleucyl, L-Lysyl, L-
Methionyl, 4-Methoxy-Leucyl, L-Phenylalanyl, L-Prolyl, L-
Pyrrolidonyl, L-Seryl, L-Threonyl, L-Tryptophyl, L-Tyrosyl, L-
Valyl, B-Naphthylamine, Tris-HCI buffer blank pH 8.0, 8-naph-
thylamide acetate, f-naphthylamide sulfate, S-naphthylamine
phosphate.
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Fig. 2-(A to C). Aminopeptidase profiles of A) virulent and B)
avirulent Erwinia amylovora and C) Erwinia herbicola after 4
hours of incubation. Values are averages of five (A), two(B)and !
three (C) isolates. The B-naphthylamide substrates are, left to
right, L-Alanyl, L-Arginyl, Benzyl-L-Arginyl, L-a-Aspartyl, L-
B-Aspartyl, L-a-Aspartyl, L-Cysteinyl, L-a-Glutamyl, L-y-Glu-
tamyl, L-a-Glutamyl-L-Phenylalanyl, Glycyl, Glycyl-Glycyl, L-
Histidyl, L-Hydroxyprolyl, L-Leucyl, L-Isoleucyl, L-Lysyl, L-
Methionyl, 4-Methoxy-Leucyl, L-Phenylalanyl, L-Prolyl, L-
Pyrrolidonyl, L-Seryl, L-Threonyl, L-Tryptophyl, L-Tyrosyl, L-
Valyl, B-Naphthylamine, Tris-HCI buffer blank pH 8.0, 8-naph-
thylamide acetate, S-naphthylamide sulfate, S-naphthylamine
phosphate.
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TABLE 3. Differences in the means of the quantities of B-naphthylamides hydrolyzed after 4- and 24-hour incubation periods by five isolates of virulent Erwinia amylovora, two isolates
of avirulent E. amylovora and three isolates of E. herbicola as determined by Duncan’s multiple-range test

Napthylamide

Differences between mean hydrolysis values*

Four-hour incubation

Twenty-four-hour incubation

Virulent E. amylovora

Avirulent E. amylovora

Virulent E. amylovora

Avirulent E. amylovora

Avirulent £. amylovora

E. herbicola

E. herbicola

Avirulent E. amylovora

E. herbicola

E. herbicola

L-Alanyl *% ** * % . *k
L-Arginyl - - - *x *% %
Benzyl-L-Arginyl ** * - *% *% —
L-a-Aspartyl - - - _ _ B
L-B-Aspartyl *% * - * * —
L-a-Aspartyl *¥ ** - - - =
L-Cysteinyl * - - - - _
L-a-Glutamyl - ** *x * - *
L-y-Glutamyl - * — - % -
L-a-Glutamyl-L-

Phenylalanyl *# * * - *% *%
Glycyl ** *k - *% % -
Glycyl-Glyeyl ** *x - - - —
L-Histidyl ** - * - *k *k
L-Hydroxyprolyl * * - * * -
L-Leucyl * - *% — — _
L-Isoleucyl ** * - * *x *
L-Lysyl hid * - * * _
L-Methionyl *% * - ** *k -
4-Methoxy-Leucy] - *¥ - *k *x **
L-Phenylalanyl - - - * * —
L-Prolyl % *x — % * _
L-Pyrrolidonyl - *% *¥ *% - -
L-Seryl ok *x - * * —
L-Threonyl ** - * * *% —
L-Tryptophyl - - — - - —
L-Tyrosyl - - - * * -
L-Valyl A *x - % o —
B-naphthylamide acetate * * — * ** -
B-naphthylamide sulfate * — - — — _
B-naphthylamide phos-

phate % * — * % -

*** = significant at P =0.01; * = significant at P = 0.05; and — = no significant differences.
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