Enzymes Catalyzing Anaplerotic Carbon Dioxide Fixation in Verticillium albo-atrum

R. E. Hartman and N. T. Keen

Professor of Biology, St. Bonaventure University, St. Bonaventure, New York 14778; and Associate Professor of Plant Pathology, University of California, Riverside 92502.

Research was supported by CSRS Grant No. 716-15-4.

Accepted for publication 2 February 1973.

ABSTRACT

Pyruvate carboxylase and phosphoenolpyruvate carboxykinase activities were present in extracts from *Verticillium albo-atrum*. Nondialyzed extracts actively fixed NaH\(^{14}\)CO\(_3\) when supplied either pyruvate and ATP or phosphoenolpyruvate (PEP) and ADP. Pyruvate plus NADH or NADPH did not produce CO\(_2\) fixation; PEP alone or with phosphate also was ineffective. The carbon-14 was incorporated into aspartate and citrate by the crude extracts. Enzyme extracts dialyzed against pH 6.6 phosphate buffer utilized only pyruvate and ATP (pyruvate carboxylase activity); whereas, extracts dialyzed against pH 7.6 tris buffer required PEP and ADP for fixation of \(^{14}\)CO\(_2\) (PEP carboxykinase). Oxaloacetate was considered as the primary fixation product in both cases. Incubation of the crude extracts with oxaloacetate for 30 min prior to dialysis enhanced pyruvate carboxylase activity. Both enzymes appeared to occur primarily in the cytosol although a significant level of PEP carboxykinase was also associated with the mitochondrial fraction.

Phytopathology 63:947-953.

Additional key words: pyruvate carboxylase, phosphoenolpyruvate carboxykinase.

Verticillium albo-atrum is a dimorphic fungus (23). Infection of the upper parts of the host plant results from the upward movement of yeast-form cells in the xylem vessels (31). We (21) found that CO\(_2\) enhanced the growth of yeast-form cells of the fungus on glucose or glycerol as the sole carbon source but not on succinate or acetate. The cells incorporated considerable radioactivity from NaH\(^{14}\)CO\(_3\) into aspartate and glutamate of protein and into the four common nucleic acid bases. It was therefore hypothesized that anaplerotic CO\(_2\) fixation was important in the growth of *V. albo-atrum* on hexoses.

Mirocha and co-workers have raised the possibility that dark fixation of CO\(_2\) may be of nutritional importance in phytopathogenic fungi (28). Since concentrations of CO\(_2\) are generally considered higher than ambient in the vessels of higher plants, anaplerotic CO\(_2\) fixation is of possible nutritional significance in the pathogenic phase of vascular wilt fungi such as *V. albo-atrum*. We have, therefore, investigated the mechanisms for CO\(_2\) fixation of this fungus. This report describes the identification and location of enzymes responsible for \(^{14}\)CO\(_2\) fixation into four-carbon compounds.

MATERIALS AND METHODS.-Preparation of cells.—*Verticillium albo-atrum*, strain V3H, was grown in the glucose-ammonium nitrate medium of Malca et al. (27), modified by the addition of biotin at 1 \(\mu\)g/100 ml and prepared as previously described (21). Generally 50 ml of medium were used in 250-ml Erlenmeyer flasks. Yeast-form cells were prepared by initially transferring spores from a slope to the synthetic medium containing glucose at 25 mg/ml and incubating for 4-5 days on a reciprocating shaker (80-90 strokes per min) at 25 C. A portion of the culture was added to fresh synthetic medium containing glucose at 5 mg/ml to yield an initial concentration of approximately 5 \(\times\) 10\(^6\) cells/ml. The culture was incubated for 48 hr, the yeast-form cells were separated by filtration through four layers of nylon netting (1,200 mesh/cm\(^2\)), washed once with deionized water, and pelleted by centrifugation at 34,000 g for 10 min at 4 C. Unless specified, all centrifugations were carried out under these conditions.

Preparation of cell extracts.—One gram of cells (wet weight) was combined with 7.5 g of acid-washed glass beads (Glasperlen, 0.45-0.50 mm diam, Van Waters & Rogers, Los Angeles) in 7.5 ml of buffer. Two buffers were generally used for cell breakage: 0.1 M potassium phosphate, pH 6.6, 1 mM dithiothreitol, 0.1 mM EDTA, 0.1 M KCl, (phosphate-breakage buffer); and 0.1 M tris, 1 mM dithiothreitol, 0.1 mM EDTA, 0.1 M KCl, and HCl to pH 7.6 (tris-breakage buffer). The cells were broken in a Bronwill MSK homogenizer for one min at approximately 4-10 C. When the tris-breakage buffer was used, Polyklar AT (GAF Corp., Calvert City, Kentucky) was added to the cell homogenate immediately after disruption at a concentration of 210 mg/g of cells.

Homogenates were centrifuged for 15 min and the supernatant fractions were either assayed directly or dialyzed. Dialysis was generally carried out at 3 C with four hourly changes of buffer with a volume 15 times that of the extract. The dialysis bag was agitated during the dialysis period. Generally one of two buffers was used: 0.1 M potassium phosphate, pH 6.6 (phosphate-dialysis buffer); 2 mM tris, 0.1 mM EDTA, 1 mM dithiothreitol, and HCl to pH 7.6 (tris-dialysis buffer).

Fractionation of cells.—Twenty grams of cells (wet weight) were combined with 120 g of glass beads in 110 ml of sucrose-breakage buffer [0.1 M potassium phosphate, pH 6.6, 0.1 mM EDTA, 1 mM dithiothreitol, 0.1 M KCl, 0.25 M sucrose, 0.15% (w/v) bovine serum albumin] and disrupted as above. The supernatant was decanted from the glass beads, centrifuged for 10 min at 2,500 g, and the pellet was
discarded. The supernatant was separated into a pellet fraction (presumed to be mitochondria) and a supernatant fraction by centrifugation for 20 min at 100,000 g. Two ml of the sucrose-breakage buffer containing 0.1 M oxalacetate and 0.55% Triton X-100 (Calbiochem, San Diego, California) were added to 10 ml of the supernatant. The mixture was incubated for 30 min at 23 C and centrifuged for 30 min at 100,000 g (Spinco Model L centrifuge). Equal portions of the supernatant were dialyzed against the phosphate-dialysis buffer, and against the tris-dialysis buffer. The dialyzed solutions were assayed for pyruvate carboxylase and phosphoenolpyruvate (PEP) carboxykinase, respectively, and analyzed for protein (cytosol, 100,000 g supernatant).

The pellet fraction from the 10,000 g centrifugation containing mitochondria was washed in the sucrose-breakage buffer and sedimented by centrifugation at 20,000 g for 20 min. The wet weight of the pellet was 0.64 g. The pellet was suspended in 5.5 ml of the phosphate-breakage buffer, combined with 6 g of glass beads, and treated for 1 min in the Bronwill MSK at 4 C. To 3 ml of the broken mitochondrial preparation was added 0.6 ml of the phosphate-breakage buffer containing 0.1 M oxalacetate, and 0.55% Triton X-100. The preparation was incubated for 25 min at 23 C. Portions of this preparation were dialyzed against the phosphate- and tris-dialysis buffers, and assayed for pyruvate carboxylase and PEP carboxykinase, respectively (mitochondrial homogenate). Another portion of the mitochondrial homogenate was centrifuged for 10 min at 34,000 g. Portions of this supernatant were dialyzed against the phosphate- and tris-dialysis buffers, assayed for pyruvate carboxylase and PEP carboxykinase respectively, and assayed for protein (mitochondrial supernatant).

Protein determination.—Generally protein was determined by the biuret method of Gornall et al. (17). In the cell fractionation study, protein was determined by the Lowry method (26). Bovine Serum Fraction V (albumin) was used as the standard.

Carbon dioxide fixation.—To assay for CO₂ fixation, reaction components were added to test tubes (13 X 100 mm) in a total volume of 1.5 ml. After equilibration at 28 C, the enzyme preparation and NaH¹⁴CO₃ (50 mcrories/mmole) were added to the tubes which were immediately stopped and incubated for 15 min. The reaction was stopped by the addition of 0.5 ml of 2 N HCl. Precipitated protein was removed by centrifugation. The supernatant was flushed with CO₂ for 15 min and a 0.5 ml aliquot was assayed for radioactivity. Controls in which the acid was added prior to the addition of the NaH¹⁴CO₃ were run with each experiment. The radioactivity in this control was subtracted from that in the reaction mixtures. Preliminary studies demonstrated that CO₂ fixation was linear with time for at least 15 min. Except for the cell fractionation study, the radioactivity data reported in the tables was obtained from 0.5-mI aliquots of the acidified reaction mixtures.

Measurement of radioactivity.—Samples were added to 10 ml of Bray's scintillation fluid (7) and radioactivity was measured in a Packard Tri-Carb Model 3002 liquid scintillation counter. Except for the decarboxylation studies, the counting efficiency was similar among the samples so that quenching corrections were not applied. In the former, quenching was determined by using toluene-¹⁴C as the internal standard.

Decarboxylation.—Decarboxylation was carried out according to the method of Krebs & Eggleston (24). This method is specific for removal of the beta-carboxyl of oxalacetate. A 0.5-ml aliquot of the reaction mixture was added to a Warburg vessel containing 1.0 ml of H₂O. One side-arm contained 0.5 ml of a saturated solution of Al₂(SO₄)₃·12 H₂O and 0.5 ml of a phthalate buffer (7.6 g potassium hydrogen phthalate + 0.9 g NaOH in 50 ml H₂O) was placed in the second side-arm. The components were then mixed and carbon dioxide was absorbed by 0.1 ml of NCS solubilizer impregnated on filter paper in the center well. The flasks were shaken for 3 hr at 25 C and radioactivity was measured in the filter paper and a 0.5-ml aliquot of the liquid phase.

2,4 Dinitrophenylhydrazine preparation.—The 2,4 dinitrophenylhydrazones were prepared essentially as described by Bacchi et al. (1). After termination of CO₂ fixation by the addition of 1.5 ml of 2 N HCl to 4.5 ml of reaction mixture, 12 μmol of oxalacetate in 0.06 ml of 0.1 M tris-HCl buffer, pH 7.0, and 2 ml of 2,4 dinitrophenylhydrazine reagent [2,4 dinitrophenylhydrazine, 0.15% (w/v), in 2 N HCl] were added. After incubation for 1.5 hr at 23 C followed by 1 hr at 3 C, the precipitated hydrazone was removed by centrifugation at 34,000 g for 5 min. The supernatant was assayed to determine the quantity of radioactivity that did not precipitate as the hydrazone. An ethanol extract of the hydrazone precipitate was assayed for radioactivity and analyzed by thin-layer chromatography to determine the identity of the 2,4 dinitrophenylhydrazones. As controls, solutions containing 12 μmol of oxalacetate, pyruvate, and α-ketoglutarate were treated in parallel with the reaction mixture and analyzed by thin-layer chromatography.

Chromatographic analyses.—The 2,4 dinitrophenylhydrazones of oxalacetate, pyruvate, and α-ketoglutarate were separated by thin-layer chromatography using Silica Gel GF 254 thin layer plates developed with benzene/methanol/glacial acetic acid (45:5:8) (v/v/v) as described by Bacchi et al. (1). Radioactivity on the TLC plates was detected using a Vangard Model 880 chromatogram scanner.

The organic acids were separated by descending paper chromatography (43) using Whatman No. 1 paper and two solvent systems: solvent system A, methyl isobutyl ketone:formic acid:water (100:28:17) (v/v/v); and solvent system B, diethyl ether:formic acid:water (50:20:5) (v/v/v). Radioactive compounds were identified by co-chromatography with authentic standards using the two solvent systems. One milliliter of the reaction
mixture was dried, resuspended in 0.2 ml of cold
0.13% (v/v) HCl in ethanol, incubated overnight at 4
C, and a 10-μl aliquot was applied to each
chromatogram. Aspartic acid was visualized by
spraying with 0.25% (w/v) ninhydrin in acetone and
heating at 105° for 5 to 10 min. Organic acids were
visualized by spraying with a reagent consisting of 1 g
glucose + 1 g aniline in 100 ml of methanol, drying
the paper at room temperature and heating for 30
min at 105 C. Radioactivity on the chromatograms
was detected prior to spraying, using the Vangard
Model 880 gas flow chromatogram scanner. To
determine relative concentrations of the radioactive
products, duplicate strips were run and scanned. The
areas under the recorder curves were cut out and
weighed.

Chelicals.—Sodium bicarbonate¹⁴C with a
specific activity of 50 muries/MM was purchased
from International Chemical and Nuclear Corp.
(Irvine, California). Acetyl CoA, sodium salt; adenine-5'-triphosphate, disodium (ATP); adenine-5'-diphosphate, sodium (ADP); and aspartate-2-oxoglutarate aminotransferase were purchased from Sigma Chemical Co. (St. Louis,
Missouri). 2-Phosphoenolpyruvic acid, trisodium
(PEP); oxalacetic acid; tris(hydroxymethyl)-aminomethane, A-grade (tris); nicotinamide-adenine dinucleotide phosphate, reduced, tetrasodium (NADPH); nicotinamide-adenine dinucleotide, reduced, disodium (NADH); dihydrothreitol; pyruvic
acid, sodium; imidazole; (+) biotin; L-glutamic acid;
and pyridoxal phosphate, A-grade, were obtained from Calbiochem (San Diego, California). Bovine
serum albumin (Fraction V powder) was purchased
from Nutritional Biochemicals (Cleveland, Ohio).
NCS solubilizer was obtained from Amersham/Searle
Corp. (Des Plaines, Illinois). Silica Gel GF 254 was
purchased from Merck Chemicals, Darmstadt,
Germany.

RESULTS.—Carbon dioxide fixation by
donabeled cell extracts.—A nondialyzed cell extract
prepared in the tris-breakage buffer exhibited high
levels of ¹⁴CO₂ fixation when either pyruvate and
ATP or PEP and ADP were present in the reaction
mixture (Table 1). Phosphoenolpyruvate alone, or in
the presence of phosphate, did not support fixation.
Likewise, pyruvate, alone or in combination with
NADH or NADPH, was ineffective. Pyruvate and
NADH or NADPH also did not support fixation when
MgSO₄ was substituted for MnSO₄ in the reaction
mixture, when 30% CO₂ in N₂ was the atmosphere in
the reaction vessel, or when the extract was prepared
in phosphate-breakage buffer.

The only radioactive spots detected on paper
chromatograms corresponded to aspartate
(ninhydrin-reacting material) and citrate
(glucose-aniline reacting material). They were
detected in a ratio of 2:1, respectively, when reaction
mixtures containing pyruvate and ATP or PEP and
ADP were analyzed by paper chromatography using
two solvent systems.

Carbon dioxide fixation by phosphate-dialyzed
cell extracts.—A cell extract that had been prepared
in the phosphate-breakage buffer and dialyzed against
the phosphate-dialysis buffer required pyruvate and
ATP for a high level of ¹⁴CO₂ fixation (Table 2).
Phosphoenolpyruvate and ADP supported only 8% of
the fixation obtained with pyruvate and ATP.

The phenylhydrazine of the radioactive fixation
product from pyruvate and ATP corresponded in
chromatographic mobility to oxalacetate
phenylhydrazone. However, only 2% of the total
radioactivity of the reaction mixture precipitated as
the phenylhydrazone. It was necessary, therefore, to
establish the identity of the primary fixation product
by another means.

The product of ¹⁴CO₂ fixation was subjected to
decarboxylation by the method of Krebs & Eggleston
(24) which is specific for the beta-carboxyl of
oxalacetate (Table 3). If oxalacetate were the primary
fixation product in the basic reaction mixture
containing pyruvate and ATP, then essentially all of

Table 1. Effect of substrates and cofactors on CO₂
fixation by a nondialyzed extract from *Verticillium albo-atrum*

<table>
<thead>
<tr>
<th>Components added to the basic medium<sup>a</sup> (μmoles)</th>
<th>Radioactivity fixed (cpm/0.5 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>130</td>
</tr>
<tr>
<td>PEP (10)<sup>b</sup></td>
<td>565</td>
</tr>
<tr>
<td>PEP (10), ADP (5)</td>
<td>35,058</td>
</tr>
<tr>
<td>PEP (10), KH<sub>2</sub>PO<sub>4</sub> (10)</td>
<td>581</td>
</tr>
<tr>
<td>Pyruvate (10)</td>
<td>312</td>
</tr>
<tr>
<td>Pyruvate (10), ATP (5)</td>
<td>64,480</td>
</tr>
<tr>
<td>Pyruvate (10), NADH (1.5)</td>
<td>246</td>
</tr>
<tr>
<td>Pyruvate (10), NADPH (1.5)</td>
<td>465</td>
</tr>
</tbody>
</table>

^a Basic medium (μmoles): tris, pH 8.5, 100; MgSO₄, 3;
KCl, 100; dihydrothreitol, 5; KHCO₃, 5; biotin, 4.1 × 10⁻⁵
NaH¹⁴CO₃, 5 μcurie; protein, 0.86 mg; total
volume, 1.5 ml; incubation time: 20 min.

^b Abbreviations used in the tables: PEP =
phosphoenolpyruvate; ADP = adenosine diphosphate; ATP =
adenosine triphosphate; NADH = reduced nicotinamide adenine
dinucleotide; NADPH = reduced nicotinamide adenine
dinucleotide phosphate.

Table 2. Requirements for ¹⁴CO₂ fixation
by a phosphate-dialyzed cell extract

<table>
<thead>
<tr>
<th>Components added to the basic medium<sup>a</sup> (μmoles)</th>
<th>Radioactivity fixed (cpm/0.5 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate (10), ATP (5)</td>
<td>16,135</td>
</tr>
<tr>
<td>Pyruvate (10)</td>
<td>89</td>
</tr>
<tr>
<td>ATP (5)</td>
<td>75</td>
</tr>
<tr>
<td>Pyruvate (10), ADP (5)</td>
<td>1,724</td>
</tr>
<tr>
<td>PEP (10)</td>
<td>141</td>
</tr>
<tr>
<td>PEP (10), ADP (5)</td>
<td>1,286</td>
</tr>
<tr>
<td>ADP (5)</td>
<td>117</td>
</tr>
<tr>
<td>None</td>
<td>70</td>
</tr>
</tbody>
</table>

^a Basic medium (μmoles): tris, pH 8.5, 100; MgSO₄, 3;
KCl, 100; dihydrothreitol, 5; KHCO₃, 5; biotin, 4.1 × 10⁻⁵
NaH¹⁴CO₃, 5 μcurie; protein, 0.86 mg; total
volume, 1.5 ml; incubation time: 15 min.
TABLE 3. Decarboxylation of the radioactive product formed by the phosphate-dialyzed cell extract

<table>
<thead>
<tr>
<th>Reaction mixture</th>
<th>Radioactivitya (liquid paper (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basicb</td>
<td>3</td>
</tr>
<tr>
<td>Basic + transaminatingc</td>
<td>97</td>
</tr>
<tr>
<td>components</td>
<td>3</td>
</tr>
</tbody>
</table>

a Approximately 17,000 cpm were added to the vessels.
b Basic reaction medium (μmoles): tris, pH 8.5, 100; pyruvic acid, 10; ATP, 5; MgSO₄, 3; KCl, 100; dithiothreitol, 5; KHCO₃, 5; biotin, 4.1 × 10⁻⁵; NaH¹⁴CO₃, 5 μcure; protein, 0.8 mg; total volume, 1.5 ml.
c Transaminating components (μmoles): pyridoxal phosphate, 0.04; glutamic acid, 10; aspartate aminotransferase, 12.8 units.

Immediately (no oxalacetate added) or it was preincubated for 30 min at 2 C or 23 C in the presence or absence of oxalacetate. Incubation in the presence of oxalacetate prior to dialysis enhanced CO₂ fixation, but there was little difference whether the incubation was carried out at 2 C or 23 C. Substitution of pyruvate for oxalacetate during preincubation resulted in a decrease in CO₂ fixation of over 50% (Table 4).

Carbon dioxide fixation by tris-dialyzed cell extracts.—A cell-free extract prepared in the tris-breakage buffer and dialyzed for 3 hr against the tris-dialysis buffer required PEP and ATP for a high level of ¹⁴CO₂ fixation (Table 5). Pyruvate and ATP supported only 2.3% of the fixation obtained with PEP and ATP.

TABLE 5. Requirements for CO₂ fixation by a tris-dialyzed cell extract

<table>
<thead>
<tr>
<th>Components added to the basic mediuma</th>
<th>Radioactivity fixed (cpm/0.5 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEP (10), ADP (5)</td>
<td>31,767</td>
</tr>
<tr>
<td>PEP (10)</td>
<td>1,477</td>
</tr>
<tr>
<td>PEP (10), KH₂PO₄ (10)</td>
<td>489</td>
</tr>
<tr>
<td>ADP (5)</td>
<td>120</td>
</tr>
<tr>
<td>Pyruvate (10)</td>
<td>35</td>
</tr>
<tr>
<td>Pyruvate (10), ADP (5)</td>
<td>195</td>
</tr>
<tr>
<td>Pyruvate (10), ATP (5)</td>
<td>724</td>
</tr>
<tr>
<td>None</td>
<td>80</td>
</tr>
</tbody>
</table>

a Basic medium (μmoles): tris, pH 7.2, 100; MnSO₄, 2; acetyl CoA, 0.5; KCl, 100; dithiothreitol, 5; KHCO₃, 5; biotin, 4.1 × 10⁻⁵; NaH¹⁴CO₃, 5 μcure; protein, 0.8 mg; total volume, 1.5 ml; incubation time: 15 min.

Only 5% decarboxylation was observed with reaction mixtures containing PEP and ADP (Table 5), indicating that the radioactivity was not in oxalacetate. Instead, paper chromatography showed that citric acid was the major radioactive substance. Although the extract had been dialyzed, oxalacetate and acetyl CoA, the substrates for citrate synthase, would be present if oxalacetate were the primary product of CO₂ fixation, since acetyl CoA was one of the components of the reaction mixture. Tokunaga et al. (36) found high activities of citrate synthase in V. albo-atrum. In order to corroborate the suspicion that oxalacetate was in fact the primary ¹⁴CO₂ fixation product, it was necessary to find conditions that would suppress citrate synthase activity without inhibiting the CO₂-fixation enzyme. A cell-free extract prepared in tris-breakage buffer, incubated for 75 min at 28 C in the presence of oxalacetate, and dialyzed for 18 hr against the tris-dialysis buffer, was found to fix a high level of ¹⁴CO₂ in the reaction mixture containing PEP and ADP. However, no citrate accumulation occurred and the radioactive product was quantitatively decarboxylated. It was therefore concluded that oxalacetate was the initial CO₂ fixation product and that PEP carboxykinase was the enzyme involved.
<table>
<thead>
<tr>
<th>Fraction</th>
<th>Radioactivity 10^3 cpm/ml fraction</th>
<th>Specific activity 10^3 cpm/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate carboxylaseb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytosol (100,000 g supernatant)</td>
<td>41.5</td>
<td>32</td>
</tr>
<tr>
<td>Basic reaction mixture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitochondrial homogenate (disrupted 10,000 g particles)</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial supernatant (35,000 g)</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Basic reaction mixture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEP carboxykinasec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytosol (100,000 g supernatant)</td>
<td>60.5</td>
<td>34</td>
</tr>
<tr>
<td>Basic reaction mixture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitochondrial homogenate (disrupted 10,000 g particles)</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial supernatant (35,000 g)</td>
<td>3.2</td>
<td>5.3</td>
</tr>
<tr>
<td>Basic reaction mixture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a In the calculation of specific activity, the quantity of protein contributed by the bovine serum albumin in the breakage buffer was subtracted from the total protein assayed in the cytosol fraction.

b Pyruvate carboxylase was prepared by dialyzing the fraction against the phosphate-dialysis buffer. The following reaction mixture was used (μmoles): tris, pH 7.9, 100; MgSO$_4$, 3; KCl, 100; biotin, 4.1×10^{-5}; KHCO$_3$, 5; pyruvate, 10; ATP, 5; NaH14CO$_3$, 5 μcurie; 0.1 ml fraction; total volume, 1.5 ml; incubation time, 10 min. The radioactivity of the reaction mixture minus pyruvate was subtracted from all values.

c PEP carboxykinase was prepared by dialyzing the fraction against the tris-dialysis buffer. The following reaction mixture was used (μmoles): imidazole, pH 5.9, 100; MnSO$_4$, 2; KCl, 100; KHCO$_3$, 5; dithiothreitol, 5; ADP, 5; PEP, 10; NaH14CO$_3$, 5 μcurie; 0.1 ml fraction; total volume, 1.5 ml; incubation time, 10 min. The radioactivity of the reaction mixture minus PEP was subtracted from all values.

Carbon dioxide fixation by cell fractions.—On the basis of carbon dioxide fixation by cytoplasmic and mitochondrial fractions, pyruvate carboxylase appeared to be located exclusively in the cytosol (Table 6). Phosphoenolpyruvate carboxykinase activity was also found in the cytosol, but significant activity was associated with the 10,000 g fractions, presumably containing mitochondria. Acetyl CoA did not enhance the activity of any of the fractions.

DISCUSSION.—Verticillium albo-atrum cells contain pyruvate carboxylase [EC 6.4.1.1] and PEP carboxykinase [EC 4.1.1.32] based on the specific 14CO$_2$-fixation requirements of ATP and pyruvate in phosphate-prepared extracts and of PEP and ADP in tris-extracts, respectively. We were unable to demonstrate the presence of additional oxalacetate- or malate-synthesizing enzymes (25) in this fungus (Table 1). The primary fixation product of dialyzed extracts supplied either pyruvate and ATP or PEP and ADP is clearly oxalacetate. The accumulation of label in aspartate and citrate by nondenized extracts indicates the presence of transaminase and citrate synthase activity. These same reactions would explain the high in vivo labeling of the aspartate and glutamate moieties of protein by whole cells of V. albo-atrum exposed to NaH14CO$_3$ (21).

Although pyruvate carboxylase has been reported from several animal tissues (1, 22, 38, 41) and microorganisms (3, 8, 11, 15, 16, 20, 30, 33), its occurrence in filamentous fungi had previously been recognized only for Aspergillus niger (6) and Penicillium camemberti (35).

The observed stimulation of pyruvate carboxylase by oxalacetate is apparently due to stabilization of the enzyme, since the effect is still observed after oxalacetate is removed from the extract by dialysis. Utter & Scrutton (40) cited the unpublished observation of J. J. Irias and M. F. Utter that addition of oxalacetate protects mammalian pyruvate carboxylase against inactivation at 2°C; whereas addition of pyruvate accelerates the rate of inactivation. They attributed these effects to changes in conformation of the enzyme.

Phosphoenolpyruvate carboxykinase occurs in many higher (3, 12, 29, 39) and lower (1, 9, 34, 42) animals. The enzyme has been reported in Saccharomyces cerevisiae (10), Pasteurella pestis (5), and Nocardia corallina (4). The only filamentous fungi in which PEP carboxykinase has been previously found are Aspergillus niger (43) and Neurospora crassa (13).

Pyruvate carboxylase seems to be located only in the cytosol of V. albo-atrum. Conversely, the enzyme has been reported to occur only in the mitochondria of chicken liver (22), superovulated rat ovary (14) and lactating rabbit mammary gland (18). It has been found in both the cytoplasm and mitochondria of rat liver and adipose tissue (32), lactating rat mammary gland (18), cow liver (2), and the fat body of the adult male desert locust (29).

Although PEP carboxykinase occurs in both the cytosol and the mitochondria of V. albo-atrum, most of the activity is associated with the former. A similar relationship was found in rat liver, but not in guinea...
pig liver (29) and Tetrahymena pyriformis (34), where most of the activity is associated with the mitochondria. Phosphoenolpyruvate carboxykinase was associated only with the mitochondria of rabbit liver, mouse liver, and hamster liver (29).

The experiment to ascertain the location of pyruvate carboxylase and phosphoenolpyruvate carboxykinase inside of the cell did not exclude the possibility of disruption of the mitochondria and subsequent leakage of the enzymes into the cytosol during fractionation. However, since the bulk of both enzymes was found in the cytosol, mitochondrial damage as an explanation for the data is valid only if it is assumed that the bulk of the mitochondria were damaged. This possibility seems unlikely since the mitochondrial preparation method was similar to the efficient method used for Neurospora crassa (19).

The presence of classical anaplerotic CO₂-fixing enzymes in V. albo-atrum is probably of importance in the net synthesis of Tricarboxylic acid cycle intermediates used for additional biosyntheses and also for gluconeogenesis when the organism is grown on C₃ or C₄ compounds (21). Any nutritional importance of these enzymes during pathogenesis (23) is unclear. However, the high CO₂ environment presumed to occur in the vascular system of the host plant and the existence of autotrophic energy-generating systems in this fungus (37) are consistent with such a possibility.

LITERATURE CITED

pl...nt-parasite interaction. The American Phytopathological Society, St. Paul, Minn.

