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ABSTRACT

A stepwise multiple linear regression computer pro-
gram was used to identify six biological and meteoro-
logical variables to predict wheat leaf rust severities 14,
21, and 30 days after the date of prediction (DP). Signifi-
cant variables were leaf rust severity on DP, growth stage
of wheat on the date predicted, average hours of free
moisture during 7 days prior to DP, number of days of
precipitation > 0.25 mm during 7 days prior to DP, a
fungal growth function, and fungal infection function.

Linear equations that combined those variables had R?
values from 0.722 to 0.527. Equations predicted leaf rust
severity within + 1, 3, and 12%, 14, 21, and 30 days in
advance, respectively. Equations with leaf rust severity as
an inoculum variable were more accurate than those with-
out an inoculum variable and those with spore numbess as
the inoculum variable.
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Resistance offers the most efficient disease control
in cereal crops, but producers often must rely on
alternative control measures as when known sources
of resistance became ineffective. Usually the alterna-
tive involves chemical control, but the economics of
crop production dictate that the value of chemical
control exists principally in the absence of effective
resistance. }

Efforts to control wheat leaf rust are a prime
example of exploiting both resistance and chemicals.
Researchers trying to control wheat leaf rust have
been unable to relax their efforts because resistance
has not remained effective, and chemicals and
methods of application have been neither effective
nor feasible. Control will be achieved only when both
methods are developed to their full potential. The
objective of these studies was to develop a method of
identifying potential epidemics early enough for fun-
gicides to be applied to reduce epidemic development
and, thus, crop loss.

Disease prediction schemes have been developed
for downy mildew of lima bean (7), blue mold on
tobacco (8), potato late blight (4, 12), and wheat leaf
rust (1, 3). Each prediction scheme uses biological-
meteorological variables. Downy mildew of lima bean
and potato late blight warnings are issued when the
number of blight-favorable days reaches a threshold
sufficient to initiate epidemics. Epidem (11), a simu-
lator of plant disease epidemics developed for tomato
early blight, constructs an epidemic as it occurs and
formulates decisions on the progress of disease based
on biological inputs. The wheat leaf rust forecasting
procedure developed for Oklahoma (3) primarily is
qualitative, and differentiates severe from light epi-
demics. The new procedure for South Dakota (1) has
not been widely tested, but should quantitatively dif-
ferentiate among epidemics. Some measure of success
is assured with each system because predictions are

based on biological-meteorological parameters.

The science of prediction aims at a mathematical
description of relationships among variables in nature.
The functional relationships do not always have clear-
ly interpretable biological meaning. Most functional
relationships expressed by regression lines are empiri-
cally fitted curves, so the functions simply represent
the best mathematical fit to an observed set of data.
The constants necessary to fit the curves possess no
clear inherent meaning. Most plant pathologists look
askance at empirically fitted curves, yet when such
curves describe the relationship between disease de-
velopment and biological-meteorological phenomena,
the curves have real though temporary value. With
sufficient knowledge of phenomena, structural
models can be constructed. They are preferred but
they may not be better predictors than empirical
models. In the studies reported here, we have used
linear regression to identify and quantify biological
and meteorological variables useful in predicting
wheat leaf rust epidemics.

MATERIALS AND METHODS.—Location of
wheat nurseries, cultivars, plot size, urediospore-
trapping techniques, methods of estimating disease
severity, and types of weather measurements taken
for 1967 and 1968 were reported previously (6). In-
vestigations in 1970 were confined to Stillwater and
Altus, Okla.; Hutchinson, Colby, and Manhattan,
Kans.; Alliance, Nebr.; and Rosemount, Minn. In
1969, we also had nurseries at Williston, No. Dak.;
and Morris, Crookston, and St. Paul, Minn. Reasoning
used in cultivar selection in 1969 and 1970 was simi-
lar to that for 1967 and 1968. Combinations of
Agent (C.I. 13523), Bison (C.I. 12518), Guide (C.I.
13856), Gage (C.I. 13532), Scout (C.I. 13546),
Parker (C.I. 13285), Cheyenne (C.I. 8885), Shawnee
(C.I. 14157), Lancer (C.I. 13547), Ottawa (C.IL
12804), and Milam (C.I. 13369) were planted in
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winter wheat nurseries; and combinations of Baart
(C1. 1697), Mindum (C.I. 5296), Thatcher (C.I.
10003), Chris (C.I. 13751), Crim (C.I. 1346S5), Mani-
tou (C.I. 13775) and Selkirk (C.I. 13100) were
planted in spring wheat nurseries. In 1967 and 1968,
we planted two cultivars at each location, but in 1969
and 1970, we planted 3 to 5. All cultivar additions
provided disease severity data on commercial cultivars
not used previously. The cultivars possessed degrees
of specific resistance to Puccinia recondita Rob. ex
Desm. tritici that ranged from 100% effective, as in
Agent, to apparently no specific resistance, as in
Triumph. Although we did not have a complete range
of specificity at each location, we obtained disease
severity data on many of the host genotypes extant in
winter and spring wheats grown in the Great Plains of
the USA.

We used a stepwise multiple regression computer
program to formulate equations to predict leaf rust
severities 14, 21, and 30 days after the date of pre-
diction (DP). Stepwise multiple regression analysis
regresses exploratorily a variable Y on variables X,
X,, X3, . .., taking various combinations to obtain a
minimum of unexplained residual variance with the
fewest independent variables. Any independent vari-
able that does not remove a significant portion of the
variation in Y is dropped from the analysis. There-
fore, the independent variable that explains the
greatest amount of variation (highest coefficient of
determination or R? value) in the dependent variable
enters the program first. Remaining variables are re-
gressed again, and the one with the highest R? enters
second. That process is repeated until all independent
variables are entered. That way, variables are selected
that explain most of the variation in disease develop-
ment.

In our program, the dependent variable (Y) is the
logy ¢ per cent leaf rust severity recorded 14,21, and
30 days after DP. Independent variables are log; ¢ per
cent leaf rust severity (disease severity = DS) on DP;
log; ¢ cumulative number of urediospores/cm?* trap-
ped from date the first spore is trapped to DP (cumu-
lative spore numbers = CSN); log; o total number of
urediospores/cm? trapped during the 7 days imme-
diately before DP (weekly spore numbers = WSN);
average minimum temperature (minimum tempera-
ture = MIN) during 7 days prior to DP; average maxi-
mum temperature (maximum temperature = MAX)
during 7 days before DP; a fungal growth function
(sin? transformation of fungal growth rate = SIN?) as
developed by Schrédter (9) and modified by Dirks &
Romig (5); growth stage of wheat (growth stage =
GS) on the predicted date where growth stages are
expressed as integers on a scale of 1 to 9 (1 = tiller, 2
= joint, 3 = late joint, 4 = boot, 5 = heading, 6 =
.anthesis, 7 = berry, 8 = dough, and 9 = ripe); average
hours of free moisture (free moisture = FM) as dew or
rain per day during the 7 days before DP; number of
days of rainfall 2> 0.25 mm (precipitation = PREC)
during the 7 days before DP; logistic rate of rust in-
crease (10) from the date rust was first observed to
DP (logistic rate of increase in disease severity =
R-DS); logistic increase of daily log cumulative num-
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ber of urediospores/cm? from date first spore trapped
to DP (logistic rate of increase of cumulative spore
numbers = R-CSN); and an infection function (infec-
tion function = IF) where each day is evaluated on
the basis of its meteorological and biological favora-
bility for infection and assigned a value of 0 or 1. A
day is considered favorable and given a value of 1
when the minimum temperature is 2 4.4 C, with 4 hr
of free moisture, and at least one urediospore/cm? is
trapped. When one of those three measurements is
below the minimum, the day is considered unfavora-
ble and given a value of zero. The sum of the daily
evaluations from the date rust is first observed to DP
is the value of the infection function.

Hourly temperatures used in the fungal growth
function (SIN?) were calculated on the basis of a
10-hr linear rise from a low at 6 AM to a high at 4 PM
and a linear drop to the next day’s low. We found the
highest correlation between temperature equivalents
calculated from actual hourly temperatures and those
calculated from estimated hourly temperatures when
hourly temperatures were estimated on the basis of a
10-hr rise and a 14-hr decline rather than-a 10-hr rise,
10-hr decline, and 4-hr constant (5).

Stepwise regression identified combinations of var-
iables that explained a significant amount of variation
in disease development. Constant values and partial
regression coefficients for those variable combina-
tions with highest R? values were used to predict
disease severity on cultivars not used in the genera-
tion of equations. We tested the precision of the
equations by calculating average variation between
observed and predicted severities (6). Equations with
the highest R? and the lowest average variation were
selected as working equations.

RESULTS.—Table 1 gives coefficients of deter-
mination (#?) for each variable that entered the step-
wise program for winter and spring wheats, respec-
tively. With one exception, DS had the highest r? of
any variable, indicating that leaf rust severity 14, 21,
and 30 days after DP is primarily a function of the
amount of leaf rust present on DP. WSN and CSN had
higher r? values than other variables, except DS, for
the 14-day prediction; however, as the predictive
period lengthened, GS, IF, SIN?, and MIN increased
their ranking relative to CSN and WSN.

Individual 7? values can be misleading in stepwise
regression. DS has the highest y? and is the first
variable to enter the program for both winter and
spring wheats; but GS, which usually does not have
the second highest #?, enters next as the second most
useful variable in prediction. Of all remaining vari-
ables, combinations of PREC, FM, SIN?, and IF,
along with DS and GS, offered the best predictions
on winter wheats, whereas combinations of DS, GS,
MIN, PREC, SIN?, and IF were best on spring
wheats. Generally, MAX, R-DS, and R-CSN were not
significant variables. By omitting DS as an indepen-
dent variable, we permitted CSN or WSN to enter as
the primary biological variable; however, all variable
combinations that included CSN or WSN had lower
R? values than those with DS.

Partial regression coefficients for variables in our
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TABLE 1. Simple coefficients of determination (r*) for independent variables used in stepwise regression of Puccinia
recondita tritici

Predictive Independent varijables
period
(days) DSsa CSN  WSN MIN MAX SIN? GS IF FM PREC R-DS R-CSN N

Winter wheat

14 0.570 0.423 0430 0209 0.059 0.196 0.144 0328 0.024 0.011  0.043 0.077 321
21 0.459 0261 0.265 0273 0.113 0245 0.148 0261 0.009 0.008 0.067 0.058 296
30 0.337 0.082 0.122 0.249 0.113 0.177 0215 0.187 0.020 0.006 0.097 0.008 229
Spring wheat
14 0.524 0.338 0.384 0.004 0.002 0.016 0.258 0.004 0.030 0.001 277
21 0.509 0.235 0.284 0.017 0.002 0.043 0.278 0.022 0.163 0.004 221
30 0.296 0.229 0.211 0.158 0.067 0.216 0.283 0.035 0.095 0.011 140
30 0.302 0.373 0.345 0.171 0.066 0.161 0.033 0394 0051 0.189 0.043 0.032 46

a DS = log,, per cent disease severity; CSN = log,, cumulative spore numbers; WSN = log, , total number of spores
trapped during 7 days prior to date of prediction; MIN = minimum temperature; MAX = maximum temperature; SIN? = sin?
fungal growth function; GS = wheat growth stage; IF = infection function; FM = hours of free moisture; PREC = precipitation;
R-DS = infection rate; R-CSN = logistic increase of cumulative spore numbers; N = number of observations.

TABLE 2. Constant value, variables, and their partial regression coefficients for predicting Puccinia recondita tritici
on winter wheat

Variables Predictive

period

Equation Ka FM PREC DS GS IF SIN? N R? (days)
1b -3.3998  0.0606 0.7675  0.4003 0.0077 321 0.722 14
2 -5.2304 0.4726  0.0826  0.0125 321  0.560 14
3 34663  0.0285  0.0681  0.6243  0.4105 0.0128 296  0.707 21
4 -4.9145 0.4505  0.0763  0.0163 296  0.572 21
5 3.5420 0.0736  0.0963  0.5409  0.4912 0.0088 229  0.669 30
6 -4.8639  0.0475 0.5107  0.2795  0.0129 229  0.554 30

a X = constant term; FM = free moisture; PREC = precipitation; DS = log, , per cent disease severity; GS = wheat growth
stage; IF = infection function; SIN2=fungal growth function; N = number of observations that went into generation of
equation; MIN = minimum temperature; R? = coefficient of determination for equations.

b Equations 1, 3, and 5, for 14-, 21-, and 30- day predictions, respectively, with rust present on date of prediction;
equations 2, 4, and 6 for 14, 21-, and 30-day predictions, respectively, with no rust present on date of prediction.

TABLE 3. Constant value, variables, and their partial regression coefficients for predicting Puccinia recondita tritici
on spring wheat

Variables Predictive
) period
Equation K2 MIN PREC I¥ DS GS SINZ N R? (days)
1b ~2.0327 7482 .3603 277 636 14
2 —1.7804 1294 6978 .3447 221 621 21
3 -1.9784 7181 .3487 0141 140 .569 30
4 -3.0194 .0540 1970 46 527 30

a K = constant term; MIN = minimum temperature; PREC = precipitation; IF = infection function; DS = log, , per cent
disease severity; GS = wheat growth stage; SIN? = sin? fungal growth function; N = number of observations that went into
generation of equation; R” = coefficient of determination for equations.

b Equations 1, 2, and 3 for 14-, 21-, and 30-day predictions, respectively, with rust present on date of prediction; equation
4 for 30-day prediction with no rust on date of prediction.

working equations are shown in Tables 2 and 3. From 3, and 5 (Table 2) and 1, 2, and 3 (Table 3) predict
the stepwise analysis, six equations emerged that leaf rust severity 14, 21, and 30 days after DP on
would accurately predict leaf rust on winter wheats winter and spring wheats if rust is present on DP. If
and four that predict for spring wheats. Equations 1, no leaf rust is present on DP in winter wheats, equa-
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TABLE 4. Number of uredia of Puccinia recondita tritici per tiller and crop growth stage on date of prediction for

wheat cultivars

Cultivar Uredia/

Location and crop Dpa tiller Growth stage
Altus, Okla. Bison wheat 16 6 Late joint
Manhattan, Kans. Bison wheat 16 4 Early joint
Colby, Kans. Scout wheat 9 Sof 10 Boot
Hutchinson, Kans. Parker wheat 16 0 Late joint
Hutchinson, Kans. Guide wheat 16 0 Late joint
Manhattan, Kans. Shawnee wheat 16 0 Late joint
Fargo, No. Dak. Baart wheat 16 8 Late joint
Rosemount, Minn. Baart wheat 16 1 Late joint
Rosemount, Minn. Chris wheat 16 1of 10 Late joint
Rosemount, Minn. Larker barley 16 0 Late joint
Rosemount, Minn. Garland oats 9 1of 10 Late joint

8 DP = Date of prediction expressed as days before heading.

tions 2, 4, and 6 (Table 2) are superior predictors
over those with DS. Therefore, equations based on
GS, IF, and SIN? predicted leaf rust severity 14 and
21 days in advance; and GS, IF, SIN?, and FM pre-
dicted leaf rust 30 days in advance on winter wheats
when there was no disease on DP. Usually, we have
leaf rust on DP in spring wheats; in the few instances
when rust is not present, IF and MIN adequately
predict 30 days in advance (equation 4, Table 3).

We tested the accuracy of our equations by pre-
dicting leaf rust severity on 34 winter wheat cultivars,
4 spring wheat cultivars, 1 spring oat cultivar, and 1
spring barley cultivar, and calculated the average
variation between actual and predicted severities for
winter wheats but not for spring wheats, the oat cul-
tivar, and the barley cultivar.

The average variation for leaf rust severities on
winter wheats was 1, 3, and 12% for 14, 21, and 30
days, respectively. The accuracy of our predictions is
best illustrated in Fig. 1 and 2. Predicted severities for
Bison wheat at Altus, Okla. (Fig. 1-A); Bison at
Manhattan, Kans. (Fig. 1-B); and Scout at Colby,
Kans. (Fig. 1-C) were calculated with equations 1, 3,
and 5 (Table 2), as leaf rust was present on DP (Table
4). Predicted severities for Parker at Hutchinson,
Kans. (Fig. 1-D); Guide at Hutchinson, Kans. (Fig.
1-E); and Shawnee at Manhattan, Kans. (Fig. 1-F)
were calculated with equations 2, 4, and 6 (Table 2),
as no leaf rust was present on DP (Table 4). We made
all predictions when the wheat was in late joint,
except at Colby where it was in boot. Predicted
severities on spring cultivars were calculated with
equations 1, 2, and 3 (Table 3).

DISCUSSION.—In developing prediction equa-
tions, our primary concern was to see if biological
and meteorological variables shown to affect rust
development could serve as predictors over a range of
environments so we could construct general equations

to predict leaf rust severity based on those variables.
Major biological and meteorological variables that
affect leaf rust development are well documented (3).
Amount of inoculum, temperature, and moisture are
paramount and are represented in our model by DS,
SIN?, FM, PREC, and IF. The only variables that
need explanation are GS and SIN?. Growth stage of
the crop on the date predicted does not seem to have
any clear biological meaning. Our rationale for using
GS was that the amount of rust usually is related to
the crop growth stage. As the crop matures, more rust
occurs. Understandably, GS does not cause rust to
occur and, in that sense, it is an artifact. We believe
the value of GS in predicting is due to the linear scale
on which it is constructed. For that reason, it serves
as a useful predictor of a disease that also progresses
linearly. The SIN? transformation of the temperature
response curve (5) enables us to predict severe epi-
demics more accurately than with nontransformed
temperature. That is principally because a linear rela-
tionship exists between rust development and the fre-
quency of favorable temperatures (not mean tempera-
ture) for fungal growth. Undoubtedly, we have not
included all possible biological and meteorological
variables that affect rust development, as our equa-
tions account for only 67 to 71% of the variation in
disease progress. Variables that might account for the
remaining 29 to 33% of unexplained variation could
be interactions and variables not cataloged. We con-
sider the prediction system presented as preliminary.
Predictions more than 30 days in advance are needed
to allow more lead time to issue forecasts and to
apply fungicides. Models designed for longer pre-
dictions require identification of additional variables.
Acceptable accuracy in prediction would differentiate
between epidemics that require control and those
that do not. It is evident that both biological and
meteorological variables are necessary for acceptable

»

Fig. 1. Actual and predicted severity of Puccinia recondita tritici on A) Bison wheat at Altus, Okla. B) Bison wheat at
Manhattan, Kans. C) Scout wheat at Colby, Kans. D) Parker wheat at Hutchinson, Kans. E) Guide wheat at Hutchinson, Kans.

F) Shawnee wheat at Manhattan, Kans.
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Fig. 2. Actual and predicted severity of Puccinia recondita tritici on A) Baart wheat at Fargo, No. Dak. B) Baart wheat at
Rosemount, Minn. C) Chris wheat at Rosemount, Minn. D) Larker batley at Rosemount, Minn. E) Crown rust on Garland

Oats at Rosemount, Minn.

accuracy of predictions. Even when DS was purposely
omitted from our model, the presence of IF was
required for acceptable accuracy. Buchenau (1) also
used biological and meteorological variables to pre-
dict leaf rust in South Dakota. Although Dirks &
Romig (5) predicted number of P. recondita uredio-
spores rather than disease severity, models based on
biological or biological-meteorological variables pre-
dicted with equal accuracy. Our experience with
spore numbers (2) lead us to hypothesize thal we
might predict amount of disease with numbers of
spores as well as with disease severity estimates be-
cause numbers of urediospores deposited on impac-
tion traps correlated with disease severity. Neverthe-
less, when spore numbers rather than disease severi-
ties were used in our model, R? values were 0.10
lower,

The principal difficulty with spore numbers is that
impaction traps are exposed to spores from endoge-
nous and exogenous sources, and the vicissitudes of
weather might cause deposition of more or fewer
spores than expected from a given level of infection
proximal to the trap. The remedy may involve stan-
dardizing trap locations, isolating plots, and including
both spore numbers and disease severity estimates as
inoculum variables.

The equations we present herc are general and
designed to predict over a range of environments in
the Great Plains of the USA. Although improved
accuracy of prediction might be achieved by gener-
ating equations for areas with similar precipitation
and temperature patterns, a certain danger exists in
that approach. Equations based only on meteoro-
logical data marginal for disease development would
not accurately predict severe epidemics in an ab-
normally favorable season. To ensure acceptable
accuracy in predicting severe and light epidemics in
areas of infrequent occurrence, we sacrificed maxi-

mum obtainable accuracy for all monitoring sites by
pooling climatic and disease data from all recording
locations. That enabled us to predict degrees of
development at any site.

LITERATURE CITED

1. BUCHENAU, G. W. 1970. Forecasting profits from
spraying for wheat rusts. South Dakota Farm Home
Res. 21:31-41.

2. BURLEIGH, J. R., R. W. ROMIG, & A. P. ROELFS.
1969. Characterization of wheat rust epidemics by
numbers of uredia and numbers of urediospores.
Phytopathology 59:1229-1237.

3. CHESTER, K. S. 1946. The cereal rusts. Chronica
Botanica Co. Waltham, Mass. 269 p.

4, COOK, H. T. 1947. Forecasting late blight epiphytotics
of potatoes and tomatoes. J. Agr. Res. 78:545-563.

5. DIRKS, V. A., & R. W. ROMIG. 1970. Linear models
applied to variation in numbers of cereal rust uredio-
spores. Phytopathology 60:246-251.

6. EVERSMEYER, M. G., & J. R. BURLEIGH. 1970. A
method of predicting epidemic development of wheat
leaf rust. Phytopathology 60:805-811.

7. HYRE, R. A. 1957. Forecasting downy mildew of lima
bean. Plant Dis. Reptr. 41:7-9.

8. MILLER, P. R., & MURIEL J. O’'BRIEN. 1957. Predic-
tion of plant disease epidemics. Annu. Rev. Microbiol.
11:77-110. ‘

9. SCHRODTER, H. 1965. Methodisches zur Bearbeitung
phytometeoropathologischer Untersuchungen dar-
gestellt am Beispiel der Temperaturrelation. Phyto-
pathol. Z. 53:154-166.

10. VAN DER PLANK, J. E. 1963. Plant disease: epidemics
and control. Academic Press, New York. 349 p.

11. WAGGONER, P. E., & J. G. HORSFALL. 1969. EPI-
DEM: a simulator of plant disease written for a com-
puter. Connecticut Agr. Exp. Sta. Bull. 698. 80 p.

12. WALLIN, J. R. 1951. Forecasting tomato and potato
late blight in the north-central region. Phytopathology
41:37 (Abstr.).



