Link to home

Genetic Variability in the Potato Pathogen Colletotrichum coccodes as Determined by Amplified Fragment Length Polymorphism and Vegetative Compatibility Group Analyses

October 2006 , Volume 96 , Number  10
Pages  1,097 - 1,107

Larry J. Heilmann , Nadav Nitzan , Dennis A. Johnson , Julie S. Pasche , Curt Doetkott , and Neil C. Gudmestad

First, fourth, and sixth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; second and third authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and fifth author: Information Technology Services, North Dakota State University, Fargo 58105


Go to article:
Accepted for publication 4 May 2006.
ABSTRACT

Amplified fragment length polymorphism (AFLP) using three primer sets was used to characterize 211 Colletotrichum coccodes isolates from North America, 112 of which were assigned to six vegetative compatibility groups (VCGs) using nitrate nonutilizing (nit) mutants. These isolates clustered into five corresponding groups by unweighted pairgroup method with arithmetic means-based cluster analysis of AFLP banding patterns. Isolates of C. coccodes belonging to NA-VCG1 and NA-VCG3 were closely related, as were isolates belonging to NA-VCG2 and NA-VCG5. Based on bootstrap analysis of AFLP data, the two isolates originally assigned to NA-VCG4 clustered with isolates belonging to NA-VCG2 and NA-VCG5. C. coccodes isolates that clustered with two isolates belonging to NA-VCG6 were the most diverged from other groups, including seven isolates collected from hosts other than potato. As opposed to the bootstrap analysis, a quadratic discriminant analysis (QDA) of AFLP data correctly categorized the two isolates of NA-VCG4. Furthermore, in isolates where VCG determinations had been made, this model correctly classified isolates of all VCGs. QDA classifications were identical to those made by the bootstrap analysis, with the exception of VCG4. Overall, classifications made by the QDA model were strongly correlated (r = 0.970, P < 0.001) to the VCGs assigned by traditional methods. All 99 C. coccodes isolates evaluated only by AFLP also were subjected to QDA, leading to the assignment of a presumptive VCG for each isolate. No isolates of VCG4 or VCG6 were identified by QDA within this population. Symptoms of black dot developed in plants inoculated with isolates collected from both potato and non-potato hosts. However, total yield was not significantly reduced by infection with non-potato isolates. The lack of any additional groups identified by AFLP analysis may be an indicator of a limited level of genetic variation among North American C. coccodes isolates. AFLP is a much more efficient technique for subspecific characterization in C. coccodes than VCG analysis utilizing nit mutants and will provide an effective means by which the population biology of this pathogen can be further investigated worldwide.



© 2006 The American Phytopathological Society