Link to home

Population Genetic Structure of Tapesia acuformis in Washington State

June 2003 , Volume 93 , Number  6
Pages  650 - 656

G. W. Douhan , T. D. Murray , and P. S. Dyer

First and second authors: Department of Plant Pathology, Washington State University, Pullman 99163; and third author, School of Life and Environmental Sciences, The University of Nottingham, Nottingham NG7 2RD, UK


Go to article:
Accepted for publication 9 January 2003.
ABSTRACT

Eyespot of wheat is caused by Tapesia yallundae and T. acuformis. Historically, T. yallundae has been considered the more important causal agent of the disease in Washington state and consists of a large homogeneous population with a genetic structure consistent with both sexual and asexual reproduction. T. acuformis has increased significantly in Washington in the past 10 years and apothecia were found recently under natural field conditions, indicating that T. acuformis may have a more important role in eyespot of wheat than previously was thought. To determine the genetic structure of T. acuformis in Washington, 141 single conidial isolates were sampled from four subpopulations in the eastern wheat-growing region of the state. Isolates were scored for mating type and six amplified fragment length polymorphism markers. All markers segregated in a 1:1 ratio and were determined to be unlinked based on genetic analysis of 24 progeny from an in vitro cross. No significant differences in allele frequencies (0.127 < P < 0.809) were found among individual loci across the four subpopulations and over all loci based on contingency table analysis of the log-likelihood ratio statistic G2. Likewise, no overall differences between subpopulations were detected using the population differentiation statistic θ (θ = -0.004, P = 0.537). Random mating could not be rejected within each subpopulation or for the combined data using clone-corrected data sets based on (i) 1:1 ratio of mating-type, (ii) multilocus gametic disequilibrium analyses (index of association), (iii) phylogenetic analyses (parsimony tree length permutation test), and (iv) genotypic diversity analyses. T. acuformis has a genetic structure similar to that of sympatric populations of T. yallundae in Washington, with both sexual and asexual reproduction contributing to the structuring of this species.



© 2003 The American Phytopathological Society