Replicase-Mediated Resistance To Potato Virus Y in Transgenic Tobacco Plants

Patrice Audy, Peter Palukaitis, Steven A. Slack, and Milton Zaitlin

Department of Plant Pathology, Cornell University, Ithaca, NY 14853 U.S.A.
Received 18 June 1993. Accepted 29 September 1993.

Nicotiana tabacum ‘Turkish Samsun NN’ plants were transformed with nuclear inclusion b (Nib) gene sequences of potato virus Y, O strain (PVY⁰). The full-length construct included an additional in-frame initiation codon contiguous to the putative N-terminal amino acid codon and a stop codon replacing the C-terminal amino acid codon. Of 13 independently transformed lines, four yielded 37 (out of 100) plants in the R₁ generation that were resistant to PVY⁰ infection. Progeny of 13 out of 15 of these plants tested expresses resistance in the R₂ generation. Conversely, 30 independently transformed tobacco lines expressing essentially the same sequence but deleted for the Gly-Asp-Asp (GDD) motif were not resistant. Two other constructs encoding either the 5'-deleted or 3'-truncated Nib gene, but harboring the GDD motif, conferred resistance to PVY⁰ in some tobacco plants. Despite the high level of nucleotide and amino acid identity shared by strains PVY⁰ and PVYN for the Nib gene, PVYN replication was found in all PVY⁰-resistant plants. However, plants of one R₂ line showed reduced PVYN replication.

Additional keywords: nonstructural gene, nuclear inclusion, polymerase, potyviruses, protection, virus replication.

The concept of pathogen-derived resistance (Sanford and Johnston 1985), which proposed that a host expressing particular parasite sequences may circumvent disease, was first applied in plant virology with the report that transgenic tobacco expressing tobacco mosaic virus (TMV) coat protein showed resistance to TMV infection (Powell-Abel et al. 1986). This type of resistance, now generally called “coat protein-mediated protection,” has been described for more than 12 virus taxonomic groups including potyviruses (for review, see Hull and Davies 1992). Recently, a few reports have shown that virus resistance could also be introduced successfully into Nicotiana species using replicase sequences of tobamo- (Golemboski et al. 1990), toba- (MacFarlane and Davies 1992), cucumino- (Anderson et al. 1992), and potexviruses (Braun and Hemenway 1992; Longstaff et al. 1993).

This phenomenon has recently been reviewed by Carr and Zaitlin (1993).

Potato virus Y (PVY) is the type member of the potyvirus group, the largest and most widely distributed group of plant viruses (Francki et al. 1985). Its genome consists of a non-segmented positive-sense RNA strand of 9.7 kb encoding one large polypeptide, co- and posttranslationally processed into at least eight mature functional proteins (Riechmann et al. 1992). The core protein of the potyvirus replicase is thought to be the nuclear inclusion b (Nib) protein (Domier et al. 1987). PVY Nib protein is not expressed from a separate open reading frame but is processed from a full-length polyprotein. To determine if resistance to PVY can be engendered using replicase sequences, a full-length DNA copy of the PVY⁰ Nib gene generating translatable transcripts, and three modified constructs derived from that DNA were transformed into tobacco. Plants harboring the full-length Nib gene construct or two defective Nib gene constructs still encoding the GDD motif (characteristic of viral polymerases; Argos 1988) were resistant to PVY⁰ infection. However, no resistance was found in tobacco lines expressing a full-length Nib gene sequence in which the GDD motif had been deleted.

RESULTS

Cloning of the PVY⁰ Nib gene and sequence analysis.

Individual proteins of PVY (Fig. 1A) are normally generated from a large polypeptide following a cascade of proteolytic events, and thus most of the genes for the processed proteins lack initiation and termination codons. To express only the Nib gene, two primers were designed to amplify a full-length construct containing an in-frame initiation codon contiguous to the first Nib N-terminal amino acid, and a stop codon replacing the C-terminal amino acid (Fig. 1B). The sequence of the DNA fragment encoding the full-length Nib gene amplified by polymerase chain reaction (PCR) is shown in Figure 1C. Clone YN1bFL DNA contains 1,560 nucleotides and encodes 519 amino acids and a stop codon. Alignment of this sequence with homologous sequences from the Japanese PVY⁰-O (Hidaka et al. 1992), the Hungarian PVY-H (Thole et al. 1993), and the French PVYN (Robaglia et al. 1989) reveals nucleotide sequence identities of 96.6, 83.5, and 92.7%, and amino acid sequence identities of 98, 93, and 93.4%, respectively. Typical conserved amino acid motifs of positive-strand RNA viruses (Koonin 1991) were identified (Fig. 1C, underlined): DxxxxD (positions 249–254), GxxTxxxN (positions 312–320), GDD (positions 352–354) and K (position 390). Modifications in the GDD box region for the
derived YNlb.Bsp and YNlb.GDD clones were confirmed by sequence analysis and are indicated in Figure 2A and C, respectively. An additional construct (YNlb.Acc) resulted in the deletion of 121 amino acids within the S' one-third of the Nb gene. Proteins encoded were ~57 kDa (YNlb.FL), ~39 kDa (YNlb.Bsp), ~43 kDa (YNlb.Acc), and ~57 kDa (YNlb.GDD) as predicted from the amino acid sequence (data not shown).

Ti-plasmid insertion and expression of NPTII protein in transgenic tobacco.

With the standard transformation protocol, more than 3 mo on rooting medium was necessary in some cases to allow development of a rooted plantlet that could tolerate transfer into soil. To enhance the efficiency of tobacco regeneration, the putatively transformed shoots were allowed to root on kanamycin-free medium. Selection of transformants was per-

Fig. 1. Schematic organization of the PVLV RNA genome (A); PVLV^2^ Nb full-length clone YNlb.FL (B). Restriction sites for Accl (Ac) and BspEI (Bs) are indicated. The black box represents the relative position of the GDD amino acid motif. Nucleotide and amino acid sequence of clone YNlb.FL (C). Underlined nucleotides are part of the degenerate primers used in the PCR amplification of the Nb gene. Underlined amino acids are conserved motifs found in RNA virus RNA-dependent RNA polymerases (Argos 1988). Numbers in the left-hand column refer to nucleotides, those in the right-hand column refer to amino acids.
The full-length Nb gene confers resistance to PVYO.

Self-fertilized R₁ progeny from 13 independently transformed FL R₂ lines were tested for their resistance to PVYO using 25 plants per line (Table 1). R₁ transgenic pROK lines lacking PVYO sequences were used as a control. No resistance was found for nine FL R₁ lines, but some individuals belonging to the FL5, 10, 12, and 13 lines exhibited resistance to PVYO (Table 1). The FL12 line was particularly noteworthy with only 8% of plants infected. A few of these plants showing resistance were reinoculated and monitored again after 10 days; most of them did not show evidence of PVYO replication. Five resistant individuals from the FL12 line listed in Table 1 were also assayed 40 days after inoculation with no virus detected by ELISA (data not shown).

Fifteen R₂ plants (selected out of the original 37 PVYO-resistant R₁ plants) from lines FL5, 10, 12, and 13 as listed in Table 1, were allowed to flower and self-fertilize, and seeds of the R₂ generation were collected. R₂ progeny seedlings were challenged with PVYO. Most of the R₂ plants, except those from the FL5 line, showed no PVYO infection, whereas all control pROK plants became infected (Table 1). Sur-
prisingly, no resistance was found in R₂ FL5 plants (FL5-9 and FL5-16). The virus concentration as monitored by ELISA in these R₂ FL5 plants was essentially the same as that recorded in pROK plants (data not shown).

Resistance continued to be expressed in the other three lines in the R₃ generation. However, some progeny of specific plants were not resistant, suggesting continuing segregation for resistance within these populations. PYY^o replication in R₂ FL12 and FL13-infected plants was strongly reduced with an average ELISA reading (OD₄₀₅) of ≈0.080, compared to the value for healthy plants (≈0.030) and the value observed with control infected plants (≈1.50) (data not shown). In another experiment, a total of 12 inoculated R₂ plants from the FL10 and FL12 lines and four pROK plants were maintained in a growth chamber at 32° C in order to determine if resistance to PYY^o was temperature sensitive. After 10 days, virus was not detected by ELISA in Nb gene-engineered plants, whereas all pROK control plants were infected (data not shown).

Defective Nb gene constructs and resistance to PYY^o.

In contrast to the FL lines, initial assessment of resistance to PYY^o in plants transformed with the defective constructs was carried out with the original transformants (R₀). A total of 16 Bsp, 30 Acc, and 30 GDD transformants (described in Fig. 2) were regenerated, rooted, and tested for PYY^o resistance (Table 2). After a first set of inoculations, only five transformants (Bsp3, 9, and 10; Acc6 and 15) gave ELISA readings significantly lower than the pROK controls. These plants were reinoculated and monitored 10 days later, and all gave low ELISA readings.

Selfed R₁ progeny of the original Bsp and Acc resistant plants were challenged with PYY^o (Table 2). Resistance was still segregating in the R₁ progeny, in that there were both resistant and susceptible progeny from each R₀ plant. There was a striking difference in the virus concentration between susceptible and resistant R₁ plants within a given line.

Table 1. Assessment of replicase-mediated resistance to potato virus Y, O strain (PYY^o) or PYYⁿ inoculation in R₁ and R₂ generation transgenic full-length (FL) lines

<table>
<thead>
<tr>
<th>R<sub>1</sub> generation</th>
<th>ELISA<sup>a</sup></th>
<th>R<sub>2</sub> generation</th>
<th>ELISA<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>pROK (control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lines FL1,2,3,11,4,6,7,8,9,11</td>
<td>225/225</td>
<td>1.041</td>
<td>ND</td>
</tr>
<tr>
<td>Line FL5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant 5-9</td>
<td>0.048</td>
<td>0.013</td>
<td>10/10</td>
</tr>
<tr>
<td>Plant 5-16</td>
<td>0.005</td>
<td>0.005</td>
<td>10/10</td>
</tr>
<tr>
<td>Line FL10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant 10-7</td>
<td>0.020</td>
<td>0.013</td>
<td>0/12</td>
</tr>
<tr>
<td>Plant 10-11</td>
<td>0.081</td>
<td>0.041</td>
<td>0/12</td>
</tr>
<tr>
<td>Plant 10-16</td>
<td>0.006</td>
<td>0.033</td>
<td>0/12</td>
</tr>
<tr>
<td>Line FL12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant 12-4</td>
<td>0.003</td>
<td>0.003</td>
<td>0/10</td>
</tr>
<tr>
<td>Plant 12-8</td>
<td>0.004</td>
<td>0.009</td>
<td>3/10</td>
</tr>
<tr>
<td>Plant 12-17</td>
<td>0.006</td>
<td>0.013</td>
<td>0/10</td>
</tr>
<tr>
<td>Plant 12-19</td>
<td>0.028</td>
<td>0.004</td>
<td>0/10</td>
</tr>
<tr>
<td>Plant 12-24</td>
<td>0.003</td>
<td>0.004</td>
<td>0/10</td>
</tr>
<tr>
<td>Line FL13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant 13-2</td>
<td>0.044</td>
<td>0.014</td>
<td>5/10</td>
</tr>
<tr>
<td>Plant 13-3</td>
<td>0.008</td>
<td>0.009</td>
<td>0/10</td>
</tr>
<tr>
<td>Plant 13-10</td>
<td>0.018</td>
<td>0.008</td>
<td>2/10</td>
</tr>
<tr>
<td>Plant 13-20</td>
<td>0.002</td>
<td>0.090</td>
<td>5/10</td>
</tr>
<tr>
<td>Plant 13-21</td>
<td>0.002</td>
<td>0.009</td>
<td>0/10</td>
</tr>
</tbody>
</table>

^aFor transgenic lines, ELISA readings represent the mean value (OD₄₀₅) of all infected plants in this specific group (ELISA background 0.00-0.03). For potentially resistant individual plants, ELISA readings represent the value of a single determination of a specific plant. 1, readings 10 days after the first inoculation; 2, Readings 10 days after the second inoculation. ND, not determined. ELISA for R₂ generation is for PYYⁿ inoculations only.

^bNumbers of infected plants as determined by ELISA at 10 days after inoculation with PYY^o or PYYⁿ as a function of the total number of inoculated plants.

Fig. 3. Agarose gel electrophoresis of amplified NPTII and PYY Nb gene fragments. PCR products were produced from genomic DNA from untransformed (C) and transformed tobacco plants harboring PYY Nb gene YN1bFL (FL), YN1bBsp (Bsp), YN1bAcc (Acc) and YN1bGDD (GDD) bands. Lane M is a 1-kbp ladder (Bethesda Research Laboratories, Gaithersburg, MD). Numbers on the right refer to the size (kbp) of the expected amplified fragments. Conditions used for PCR amplification are described in the text.

Fig. 4. NPTII protein concentration in leaf tissue of tobacco plants. Untransformed (NN) and transformed R₂ tobacco plants harboring pROK2 (ROK), YN1bFL (FL), YN1bBsp (Bsp), YN1bAcc (Acc), and YN1bGDD (GDD) DNA sequences were assayed when the plants were approximately 3 inches tall. Each column represents the mean value and the standard error of a single determination of 5 untransformed plants (NN) and 13 FL, 16 Bsp, 27 Acc, 30 GDD or 5 pROK independently transformed plants.
Infected plants supported a level of virus replication similar to the control pROK lines (ELISA OD₄₀₅ = 1.5), whereas resistant plants were essentially virus-free (=0.020).

Resistance to other potyviruses and to CMV.

Heterologous viruses were used to challenge five plants each of R₁, FL and R₁ Acc and R₁ Bsp lines previously found to exhibit resistance to PVY⁰. All plants inoculated with cucumber mosaic virus (CMV), tobacco etch virus (TEV), and pepper mottle virus (PeMoV) became infected and showed typical symptoms within 7 days. Neither differences nor delays in symptom expression were observed between control and transformed plants.

Resistance to PVY^N.

As the tobacco veinal necrosis strain of PVY (PVY^N) was symptomless in nontransformed tobacco 10 days after inoculation, ELISA was used to test for virus replication. Because of the quarantine safety requirement necessary for the use of this virus, only three plants from each line were inoculated and kept in a locked growth chamber. ELISA readings showed that PVY^N replication occurred in all inoculated plants, and generally, the concentration of virions was comparable in controls and NiIb gene transformants (Tables 1 and 2). However, some R₂ FL12 lines yielded ELISA readings that were two to six times lower than the pROK control plants, suggesting a possible partial resistance (Table 1).

DISCUSSION

Since the first report describing extreme resistance to TMV disease in tobacco plants transformed with a putative viral-coded replicase component (Golembski et al. 1990), an analogous approach has been successful in generating transgenic Nicotiana plants expressing resistance to pea early browning virus; (MacFarlane and Davies 1992), CMV (Anderson et al. 1992), and potato virus X (PVX; Braun and Hemenway 1992; Longstaff et al. 1993). In the first two cases, the DNA sequence transferred into plants was a replicase read-through open reading frame encoding a protein of 54 kDa. This replicase-mediated resistance was not restricted to viruses employing a read-through strategy, since recent reports with truncated CMV RNA2-encoded (Anderson et al. 1992) and full-length, truncated, or mutated PVX ORF^I-encoded (Braun and Hemenway 1992; Longstaff et al. 1993) replicase sequences showed resistance induction. In our study, we were interested in determining if this striking form of replicase-mediated resistance could be extended to the economically important potyvirus group. Furthermore, we wished to extend the phenomenon to a virus group in which the replicase protein was normally processed from a polyprotein. The results presented in this paper show that tobacco plants transformed with the PVY⁰ NiIb gene sequences express a high level of resistance to PVY⁰. A total of 325 R₁ plants (unselected segregating population), belonging to 13 independent lines transformed with the full-length NiIb gene (FL lines), were challenged with PVY⁰ and some individuals from four FL lines exhibited resistance. None of these plants were infected following a second inoculation, confirming sustained resistance to PVY⁰. For three of these lines, this resistance was retained in the R₂ progeny.

Interpretation of the induction of resistance by transformation of plants with replicase gene sequences is at times influenced by the procedure used to assay resistance. For example, our own experience with replicase-mediated resistance (Anderson et al. 1992) and that of others with coat protein-mediated protection (Anderson et al. 1989 as one example) indicated that plants which may appear to be resistant when tested with low concentrations of inoculum, no longer show resistance when challenged with higher concentrations. Thus, R₂ ratios of susceptible/resistant plants have little relevance. In this study we used high inoculum concentrations, thereby imposing a stringent test for resistance, accepting as resistant only those plants that showed no disease symptoms and which had background ELISA values. Furthermore, the number of copies of the inserted gene or gene fragment, and their relative positions in the host genome could influence both their capacity for resistance induction and the segregation ratios. It is also apparent that R₂ plants generated from resistant plants may still be segregating for

Table 2. Assessment of replicase-mediated resistance to potato virus Y, O strain (PVY⁰) or PVY^N in original (R₀) and R₁ generation transgenic Bsp, Acc, and GDD lines

<table>
<thead>
<tr>
<th>R<sub>0</sub> generation</th>
<th>R<sub>1</sub> generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inoculated with PVY<sup>0</sup></td>
<td>Inoculated with PVY<sup>0</sup></td>
</tr>
<tr>
<td>No.</td>
<td>ELISA<sup>1</sup></td>
</tr>
<tr>
<td>pROK (control)</td>
<td>30/30<sup>a</sup></td>
</tr>
<tr>
<td>Bsp</td>
<td>13/16</td>
</tr>
<tr>
<td>Plant 3</td>
<td>0.184</td>
</tr>
<tr>
<td>Plant 9</td>
<td>0.005</td>
</tr>
<tr>
<td>Plant 10</td>
<td>0.191</td>
</tr>
<tr>
<td>Acc</td>
<td>28/30</td>
</tr>
<tr>
<td>Plant 6</td>
<td>0.035</td>
</tr>
<tr>
<td>Plant 15</td>
<td>0.037</td>
</tr>
</tbody>
</table>

^aFor R₀ transgenic plants, ELISA readings represent the mean value (OD₄₀₅) of all infected plants in a specific group (Bsp, Acc, GDD). For potentially R₀ resistant individual plants, ELISA readings represent the value of a single determination of a given plant (ELISA background 0.00-0.03). For R₁ lines, ELISA values represent mean values for infected plants, with uninfected plants yielding background values of 0.00-0.03. 1, readings 10 days after the first inoculation; 2, Readings 10 days after the second inoculation. ND, not determined.

^bNumbers of infected plants recorded by ELISA at 10 days after inoculation with PVY⁰ or PVY^N as a function of total number of inoculated plants.
resistance. This is evident in the plants of the FL12 and FL13 lines, and could explain why all of the R₂ plants in the FL5 line showed no resistance (Table 1).

This work represents the second example of replicase-mediated resistance resulting from the expression of a full-length replicase gene. Braun and Hemenway (1992) recently reported a dramatic reduction of PVX replication in tobacco plants expressing a full-length 165-kDa replicase gene of PVX. These findings were unexpected, taking into account the fact that tobacco plants expressing ALMV (Taschner et al. 1991) or BMV (Mori et al. 1992) full-length replicase genes did not exhibit resistance, but instead, complemented replicase-defective mutants. It remains to be determined, however, if the replicase sequences transformed in the case of PVX or PVY are fully functional and have not been inadvertently modified during the cloning and transformation processes.

PVY₀-resistant genotypes were also found among tobacco plants expressing two defective Nib constructs. One of those modified genes (YNib.Bsp) encoding a truncated translation product 70% as large as the full-length protein, is similar to the truncated CMV replicase gene construct used by Anderson et al. (1992) to induce CMV resistance in tobacco, except that in PVY Nib, the GDD amino acid motif was retained. Three out of 16 Bsp R₂ tobacco plants exhibited resistance to PVY₀. The second defective construct (YNib.Acc) carried a 20% deletion at the 5' end of the Nib gene but still encoded all conserved motifs of viral replicases. Two out of 30 Acc R₂ transformants displayed resistance to PVY₀ infection indicating that the 5' portion of the Nib gene is not essential for the induction of resistance. None of the 30 R₂ lines of the GDD deletion construct showed resistance to PVY₀ (Table 2).

Replicase-mediated resistance has been shown to have a narrower spectrum of specificity than coat protein-mediated protection, as shown with TMV (Golemboski et al. 1990). As expected, PVY₀ resistant plants belonging to the FL, Bsp, and Acc lines did not exhibit resistance to CMV or to two distantly related potyviruses, TEV and PepMoV. Surprisingly, the closely related strain PVYN was found to infect PVY₀-resistant plants. However, plants of the FL12 R₂ line did show a lower concentration of PVYN virions compared to the pROK control plants 10 days after inoculation (Table 1). The potyviruses TEV and PepMoV share only 60–70% identity with PVY₀ at both the nucleotide and amino acid levels for the Nib gene; however, in the case of PVYN the percentage of identity is above 90%. The striking differences in response to PVY₀ or PVYN inoculation in transgenic PVY₀ Nib plants suggest that Nib replicase-mediated resistance to PVY is indeed strain specific, but the finding of partial resistance in one line suggests that further selections may yield lines with an enhanced spectrum of resistance.

Farinelli et al. (1992) reported a similar phenomenon with transgenic potato plants expressing the PVYN coat protein gene. Two PVYN-transformed resistant potato lines were readily infected when challenged with PVY₀. These findings were surprising and unexpected since similarities between the PVY₀ and PVYN strains are even higher (~98%) for the coat protein genes (Lawson et al. 1990). It is obvious from the above discussion that we have much to learn about the mechanism(s) underlying both coat protein- and replicase-mediated resistance induced by transformation of otherwise susceptible plant species.

MATERIALS AND METHODS

Plants and viruses.

Nicotiana tabacum 'Turkish Samsun NN' was used for virus propagation and transformation. The PVY₀ strain used for cloning and inoculations was selected for its high titer in plant tissue; it was isolated from a Solanum genotype Mex 1035 (Griffiths et al. 1990). PVY₀ was purified from systemically infected tobacco leaves 4 wk postinoculation (Yang et al. 1983).

Cucumber mosaic virus (Fny-CMV; Roossinck and Palukaitis 1990), the tobacco veinal necrosis strain of PVY (PVY⁺; TVN-ONT; McDonald and Kristjansson 1993) and two heterologous potyviruses were used for challenge inoculation studies. Isolates of TEV and PepMoV kindly provided by John Murphy (Cornell University, Ithaca, NY), were used to generate infected plant tissue for inoculation.

Cloning and sequencing of the PVY₀ Nib gene.

PVY₀ RNA was extracted from purified virions (Dougherty and Hieber 1980) and synthesis of the first cDNA strand was carried out with Moloney murine leukemia virus reverse transcriptase (Sambrook et al. 1989). The DNA-RNA duplex was isolated by phenol extraction and ethanol precipitation and subjected to PCR amplification with Taq polymerase (AmpliTaq; Perkin-Elmer Cetus). The upstream primer used for the amplification was 5'-GATCATGATGTAGTGTGATC-CCATGGCTAAGCATCTGC-3', which corresponds in part to nucleotides 6986–7023 of the PVY₀ RNA sequence (Robaglia et al. 1989). The original sequence was modified to create a BamHI site (underlined) and an AUG start codon (bold face) adjacent to the first codon of the Nib gene. The downstream primer was 3'-CTTCATGTGGTAAATCCAT-GGCTGTGTTAACCTAG-5' complementary to nucleotides 8558–8592 of the PVY₀ RNA sequence. This oligonucleotide was designed to introduce a single base substitution (GTT to ATT) in the last 3' codon of the Nib gene (bold face) to create an ochre stop codon (UAA) and to insert a KpnI site (underlined). After 25 repeated cycles of amplification involving a denaturation step at 95°C for 1 min, an annealing step at 50°C for 1 min and a DNA synthesis step at 72°C for 3 min, the PCR products were visualized on a 1% agarose gel. Bands of the expected size (1.6 kb) were eluted from the gel, digested with BamHI and KpnI and ligated into a similarly digested pBluescript SK vector (Stratagene). Recombinant plasmids were transformed into E. coli strain XL-1 blue (Stratagene) using a CaCl₂ transformation procedure (Sambrook et al. 1989). This clone was called YNib-FL (Fig. 1B). Subcloned YNib-FL restriction fragments were sequenced by the dideoxynucleotide chain termination method (Sanger et al. 1977) using modified T7 DNA polymerase (Sequenase; U.S. Biochemicals).

Construction of defective PVY₀ Nib genes.

Three defective Nib gene constructs were derived from the full-length YNib-FL clone. An Nib replicase gene (YNib.Bsp; Fig. 2A) was generated by digesting clone YNib-FL with BspEI (position 1080–1085) followed by treatment with the Klenow fragment of DNA polymerase I to obtain a blunt-ended molecule. The plasmid, recircularized using T4 DNA ligase, contains a +4-frameshifting sequence that created two in-frame trans-
lational stop codons, 10 and 15 codons downstream from the GDD motif (Fig. 2A). A second defective construct (YNib.Acc; Fig. 2B) was generated, resulting in an in-frame deletion of 363 nucleotides (position 110-472) between two AccI recognition sites at the 5′ end of the YNib.FL sequence. Finally, a third clone (YNib.GDD; Fig. 2C) deleted for the sequence encoding the amino acids GDDL was generated using PCR mutagenesis (Kammann et al. 1989). T3 RNA polymerase derived transcripts of those pBluescript clones were assayed by in vitro translation using a rabbit reticulocyte lysate system (Promega) as described by Domier et al. 1989. Translation products were analyzed by SDS-polyacrylamide gel electrophoresis (Laemmli 1970).

Plant transformation.

The BamHI-KpnI fragments of the four YNib clones were inserted into the BamHI and KpnI sites of the expression cassette of the binary vector pROK2 (Longstaff et al. 1993) to derive the corresponding plasmids pYNib.FL, pYNib.Bsp, pYNib.Acc, and pYNib.GDD (Fig. 2D). The pROK2 derivatives were transferred into the noncongeneric Agrobacterium tumefaciens strain LBA-4404 by triparental mating (Rogers et al. 1986) using pRK2013 as a helper plasmid. Transconjugants selected on kanamycin and streptomycin (50 and 125 μg/ml, respectively), were used to transform tobacco leaf disks as described by Horsch et al. (1985). Except where indicated in the Results section, transformations were regenerated on a selection medium containing kanamycin (300 μg/ml). Rooted plantlets were transferred to soil and maintained in a greenhouse with a 16 hr light/8 hr dark cycle at 25°C.

Selection of transformants.

The presence of the neomycin phosphotransferase II (NPTII) and PVY Nib gene sequences in the regenerated tobacco plants was determined by PCR analysis of genomic DNA isolated from each plant. Genomic DNA was isolated (Murray and Thompson 1980) and amplification of the Nib gene inserts was carried out using the degenerate primers used to clone the PVY0 Nib gene. For the NPTII gene, two oligonucleotide primers (5′-GGTTCCTCAGCGGCTTGGGGTTG-3′ and 3′-GGCGGACGGCTAAGCTCAGGC-5′) were designed according to nucleotide positions 28-49 (+ sense) and 738-759 (+ sense) of the NPTII sequence (Beck et al. 1982). PCR amplification was performed with Taq polymerase (AmpliTaq; Perkin-Elmer Cetus) and 0.5 μg of genomic plant DNA using a three-temperature program (95°C for 1 min, 60°C for 1 min, and 72°C for 2 min) for 30 cycles. Regenerated tobacco plants were also assayed for the NPTII protein using an ELISA-assay kit as recommended by the manufacturer (5 Prime-3 Prime, Inc.).

Virus resistance experiments.

Original transformants (R0) and self-pollinated progeny plants (R1 and R2 generations) were inoculated with PVY0 at the three-leaf stage. In some cases, R2 and R3 progeny plants were also inoculated with PVYn, TEV, PepMoV, or CMV approximately 6 wk after planting, when they had three or four leaves. All inocula were freshly prepared by grinding systemically infected tobacco leaves in a microtube without buffer. The sap collected after a brief centrifugation (10,000 g, 1 min) was used directly. The largest leaf was dusted with Carborundum, mechanically inoculated using a cotton applicator and washed with water. The concentration of virus in each inoculum was estimated at 50–100 μg/ml by ELISA using freshly purified virus preparations as standards. These inocula reproducibly gave 100% infection on control pROK plants. Control pROK plants were 'selfed' tobacco transformants (R0) that harbored the NPTII gene and the expression cassette but not the PVY insert. The visual symptoms of PVY infection in the tobacco cultivar Samsun NN are very subtle, so ELISA was routinely used to assess virus replication. TEV-, PepMoV-, and CMV-inoculated plants were scored daily for visual symptoms. Double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) was used to monitor PVY0 and PVYn in leaf tissues 10 days, and in some cases, 20 and 40 days after inoculation. A PVY polyclonal antiserum (Agdia) was used to precoat the microtiter plates and ELISA was performed with the same polyclonal antibody conjugated with alkaline phosphatase.

ACKNOWLEDGMENTS

We wish to thank Laura Tufford, Ewa Zimnoch-Guzowska, and Joseph Anderson for their able assistance and valuable discussions, and John Carr for a critical review of the manuscript. This work was supported in part by grants 90-37252-5293 and 92-3703-7685 (to MZ) from the USDA Competitive Grants Program. Patrice Audy was a recipient of a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada.

LITERATURE CITED

Golenbock, D. B., Lomonossoff, G. P., and Zaitlin, M. 1990. Plants transformed with a tobacco mosaic nonstructural gene sequence are
and heat therapy on virus concentration in in vitro potato plantlets.
Hidaka, M., Yoshida, Y., Masaki, H., Namba, S., Yamashita, S.,
Tsuchizaki, T., and Uozumi, T. 1992. Cloning and sequencing of the 3’
 half of a potato virus Y (o strain) genome encoding the 5K protein,
Horsch, R. B., Fry, J. G., Hoffmann, N. L., Eichholtz, D., Rogers, S. G.,
and Fraley, R. T. 1985. A simple and general method for transferring
genes into plants. Science 227:1229-1231.
Hull, R., and Davies, J. W. 1992. Approaches to unconventional control
insertional mutagenesis of DNA by polymerase chain reaction (PCR).
Nucleic Acids Res. 17:5404-5408.
Koonin, E. V. 1991. The phylogeny of RNA-dependent RNA poly-
Laemmli, U. K. 1970. Cleavage of structural proteins during the
Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders,
P., and Tumer, N. E. 1990. Engineering resistance to mixed infection
in a commercial potato cultivar: Resistance to potato virus X and
potato virus Y in transgenic Russet Burbank. Bio/Technology 8:127-
134.
Longstaff, M., Brigneti, G., Boccard, F., Chapman, S., and Baulcombe,
D. 1993. Extreme resistance to potato virus X infection in plants
expressing a modified component of the putative viral replicase.
region of the 201-kilodalton replicase gene from pea early browning
virus RNA 1 are resistant to virus infection. Proc. Natl. Acad. Sci.
USA 89:5829-5833.
Mori, M., Mise, K., Okuno, T., and Furusawa, I. 1992. Expression of
brome mosaic virus-encoded replicase genes in transgenic tobacco
Murray, M. G., and Thompson, W. F. 1980. Rapid isolation of high
molecular weight plant DNA. Nucleic Acids Res. 8:4321-4325.
Powell-Abel, P., Nelson, R. S., De B., Hoffman, N., Rogers, S. G.,
Fraley, R. T., and Beachy, R. N. 1986. Delay of disease development in
transgenic plants that express the tobacco mosaic virus coat protein
Riechmann, J. L., Lain, S., and Garcia, J. A. 1992. Highlights and
Robaglia, C., Duan-Tardif, M., Tronchet, M., Boudazin, G., Aster-Mani-
facier, S., and Cassel-Delbart, F. 1989. Nucleotide sequence of potato
Rogers, S. G., Horsch, R. B., and Fraley, R. T. 1986. Gene transfer in
plants: Production of transformed plants using Ti plasmid vectors.
Roossinck, M. J., and Palukaitis, P. 1990. Rapid induction and severity of
symptoms in zucchini squash (Cucurbita pepo) map to RNA 1 of
Spring Harbor, NY.
Sanford, J. C., and Johnston, S. A. 1985. The concept of parasite-derived
resistance: Deriving resistance genes from the parasite's own genome.
Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with
chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-
5467.
Taschner, P. E. M., van der Kuyt, A. C., Neelenman, L., and Bol, J. F.
1991. Replication of an incomplete alfalfa mosaic virus genome in
Thole, V., Dalmay, T., Burgspan, J., and Balazs, E. 1993. Cloning and se-
quencing of potato virus Y (Hungarian isolate) genomic RNA. Gene
123:149-156.
Yang, L., Reddick, B., and Slack, S. A. 1983. Results of experiments on
the purification of potato virus Y. Phytopathology (Abstr.) 73:794.