Characterization of the Overlapping Promoters of \textit{nolB} and \textit{nolW}, Two Soybean Cultivar Specificity Genes from \textit{Rhizobium fredii} Strain USDA257

Jun Gu, Pedro A. Balatti, Hari B. Krishnan, and Steven G. Pueppke

Department of Plant Pathology, University of Missouri, Columbia, MO 65211 U.S.A.

Received 1 July 1996. Accepted 30 October 1996.

The transcripts of \textit{nolW} and \textit{nolB}, two divergently oriented cultivar specificity genes of \textit{Rhizobium fredii} strain USDA257, are known to be initiated 14 bp apart from promoters that face one another. We show here that expression of \textit{nolB} is dependent both on induction with flavonoid signals and on the regulatory gene, \textit{nodD}. Expression of \textit{nolW} is constitutive and independent of flavonoids and \textit{nodD}. Normal expression of \textit{nolB} is retained with a promoter that extends only 61 bp upstream of the transcript start site, but it is lost if an additional 24 bp are removed. Substantial expression of \textit{nolW} is retained with a promoter that contains only 34 bp of DNA upstream from the transcript initiation site. The dual control region for the two genes is thus only about 109 bp in length.

Cultivar-specific nodulation of soybean (\textit{Glycine max} (L.) Merr.) by \textit{Rhizobium fredii} strain USDA257 is controlled by a locus termed \textit{nolXWBTUV} (Heron et al. 1989; Meinhardt et al. 1993). When all of these genes are intact, nodulation of improved cultivars such as McCall is blocked at the stage of infection (Chatterjee et al. 1990). If any one of them is inactivated nodulation is allowed to proceed normally and nitrogen fixation is fixed. \textit{nolXWBTUV} is not known to influence the symbiotic interaction between USDA257 and most other legume hosts (our unpublished data), but it does exert a negative effect on interaction between \textit{nolXWBTUV} and most other legume hosts.

Expression of most nodulation \textit{(nod)} genes is under the control of one or more copies of the regulatory gene, \textit{nodD}, and stimulated by flavonoids from the plant host (Schlaman et al. 1992; Pueppke 1996). Analysis of gene fusions has confirmed that expression of \textit{nolX} and \textit{nolBTUV}, but not \textit{nolW}, is greatly enhanced by several of these signal compounds (Meinhardt et al. 1993; Bellato et al. 1996). This pattern of flavonoid responsiveness, which has been verified independently by RNA dot blots and transcript analysis (Kovács et al. 1995), is unusual, because the \textit{nolXWBTUV} locus lacks the consensus promoter sequences that are thought to be essential.

Table 1. Expression of \textit{nolB} and \textit{nolW} in \textit{R. fredii} USDA191 and USDA191\textit{NodD1} a

<table>
<thead>
<tr>
<th>Strain</th>
<th>Gene</th>
<th>Uninduced</th>
<th>Flavonoid-induced</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA191(pMP220)</td>
<td>None</td>
<td>175 ± 38</td>
<td>164 ± 41</td>
</tr>
<tr>
<td>USDA191(pMP275.6)</td>
<td>\textit{nolW}</td>
<td>1,854 ± 132</td>
<td>1,923 ± 75</td>
</tr>
<tr>
<td>USDA191(pMP275.1)</td>
<td>\textit{nolB}</td>
<td>149 ± 8</td>
<td>1,800 ± 194</td>
</tr>
<tr>
<td>USDA191\textit{NodD1} a (pMP220)</td>
<td>None</td>
<td>115 ± 16</td>
<td>99 ± 21</td>
</tr>
<tr>
<td>USDA191\textit{NodD1} a (pMP275.6)</td>
<td>\textit{nolW}</td>
<td>1,821 ± 46</td>
<td>1,822 ± 81</td>
</tr>
<tr>
<td>USDA191\textit{NodD1} a (pMP275.1)</td>
<td>\textit{nolB}</td>
<td>203 ± 55</td>
<td>201 ± 24</td>
</tr>
</tbody>
</table>

a Bacteria were grown for 7 h in the presence or absence of 2 µM apigenin as inducer. Values represent means ± standard deviations from replicate experiments.

Table 2. Delimitation of the promoter regions of \textit{nolB} a

<table>
<thead>
<tr>
<th>Fusion</th>
<th>Promoter terminus b</th>
<th>\textit{β}-Galactosidase Activity (Miller units)</th>
<th>Fold induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMP275.1</td>
<td>–176</td>
<td>1,882 ± 273</td>
<td>182 ± 85</td>
</tr>
<tr>
<td>pB2</td>
<td>–70</td>
<td>2,215 ± 78</td>
<td>179 ± 25</td>
</tr>
<tr>
<td>pB3</td>
<td>–61</td>
<td>2,053 ± 187</td>
<td>191 ± 17</td>
</tr>
<tr>
<td>pB4</td>
<td>–37</td>
<td>80 ± 25</td>
<td>70 ± 16</td>
</tr>
<tr>
<td>pB5</td>
<td>–25</td>
<td>153 ± 15</td>
<td>113 ± 7</td>
</tr>
<tr>
<td>pB6</td>
<td>–18</td>
<td>3,166 ± 142</td>
<td>2,967 ± 31</td>
</tr>
<tr>
<td>pB7</td>
<td>–15</td>
<td>4,622 ± 142</td>
<td>3,910 ± 392</td>
</tr>
<tr>
<td>pMP220 control</td>
<td>–61</td>
<td>58 ± 4</td>
<td>58 ± 20</td>
</tr>
</tbody>
</table>

a Bacteria were grown for 7 h in the presence or absence of inducer. Values represent means ± standard deviations from replicate experiments.

b Distance in base pairs from the transcriptional initiation site.
for mediating flavonoid inducibility (Schlaman et al. 1992). Here we focus on defining the divergent promoter region that lies between \textit{nolB} and \textit{nolW}. This short 155-bp block of bases (Fig. 2) contains the upstream terminus of the flavonoid-responsive \textit{nolBTUV} transcript and that of the flavonoid-nonresponsive \textit{nolW} transcript (Kovács et al. 1995). The transcript start sites are just 14 bp apart and oriented toward one another in a face-to-face arrangement of the type described by Beck and Warren (1988).

The role of \textit{nodD} in expression of \textit{nolB} and \textit{nolW} was assessed with two plasmids, both based on promoter probe pMP220 (Spaink et al. 1987). Each contained a 257-bp PCR-amplified fragment that spans the nontranslated region between the two genes and includes 51 bp of the 5′-coding region of each (Kovács et al. 1995). \textit{nolB} is oriented toward \textit{lacZ} of the vector in pMP275.1, and \textit{nolW} assumes this orientation in pMP275.6. Since \textit{nodD}-negative mutants of strain USDA257 are not available, we transferred the plasmids to \textit{R. fredii} USDA191 and to mutant USDA191\textit{NodD}1–, which contains a kanamycin-resistance cassette in the \textit{Bam}HI site of \textit{nodD}1 (Appelbaum et al. 1988). The sequences of \textit{nodD}1 and its promoter region are identical in the two strains.
The nolW promoter increased β-galactosidase activity to more than 10 times the background level, whether or not the cells had been induced with apigenin. This activity was independent of nodD1 (Table 1). In contrast, the nodB promoter elevated β-galactosidase activity about 12-fold, but only if nodD1 was intact and the cells had been exposed to the flavonoid. These observations are significant for several reasons. First, they establish that expression of nolW resembles that of regulatory nodulation genes, including nodD itself and syrM (Györgypal et al. 1991; Schlaman et al. 1992; Pueppke 1996), as well as nodW (Loh and G. Stacey, unpublished observations). In this sense, nolW differs fundamentally from the majority of nod genes. Second, we show that expression of nodB, like that of nodI of R. fredii strain USDA201 (Bouy-Mills et al. 1994), depends not only on host signals, but also on the nodD regulatory circuit. Third, our data confirm that nodD2, a second nodD copy that is present and active in USDA191NodD1+ (Appelbaum et al. 1988), cannot sustain expression of nodB. This finding is in accord with the assignment of only a minor symbiotic role to this gene (Appelbaum et al. 1988).

We next employed deletion analysis to precisely define the promoters of nodB and nodW. The DNA insert from pMP275.6 was excised as a XbaI/HindIII fragment and ligated into pGEM7Zf(+), a multicopy vector from Promega Biotech. This plasmid was linearized with BglII, filled in with α-phosphorothioate deoxyribonucleotide triphosphates (according to the protocol of Promega Corp.), and then digested with ClaI to create a site for deletion into the nodB promoter. Following partial digestion with exonuclease III and religation of the deleted derivatives, inserts were cloned into BglII/EcoRI-treated pMP220. A similar protocol was utilized to create progressive deletions into the nodW promoter. In this case, the orientation of the insertion in pGEM7Zf(+) was reversed; the plasmid was linearized with HindIII and cut with SalI prior to digestion with exonuclease III. Each deletion endpoint was established by nucleic acid sequencing, and the promoter activities of the pMP220 derivatives were assessed in the USDA257 background as described.

Figure 1 positions of the dual promoter region with respect to the divergent open reading frames of nodW and nodB. pMP275.6, which has nodW oriented toward lacZ, increased β-galactosidase levels by about 15-fold compared to that of control plasmid pMP220 (906 to 1,071 Miller units for pMP275.6 versus 60 to 66 Miller units for the control). Deletions to positions –34 and –14 with respect to the transcriptional start site of the gene (Fig. 2) reduced expression to 7.3- and 6.3-fold, respectively, of control levels, indicating that significant activity is retained with a promoter that is only 34 bp in length. Removal of the entire promoter by deletion to positions 0 and +9, however, effectively abolished expression of the gene (1.2- to 1.7-fold induction as compared to the control plasmid). Expression of nodW by all of these derivatives was constitutive.

Table 2 gives the results of analogous experiments with the nodB promoter. Deletion to position –61 with respect to the transcriptional start site had no significant effect on expression of the gene, but removal of an additional 24 bp to create pB4 abolished promoter activity. Further deletion to position –18 or –15 caused β-galactosidase activity to reappear at a constitutive level that was about twice that supported by pMP275.1 (Table 2). We attribute this exaggerated activity to an artificial promoter created during the deletion and ligation process (see Hunt et al. 1994, for example).

In summary, our deletion analysis confirms that only about 109 bp of DNA are required for full activity of nodB and substantial activity of nodW. From left to right (Fig. 2), this includes 61 bp upstream of the nodB transcript, the 14 bp that lie between the two transcripts, and 34 bp upstream of the nodW transcript. Approximately 25 bp of DNA usually separate the transcript start sites of conventional nodD-dependent genes from the proximal termini of their nod box promoters (Fisher et al. 1987, 1988; deMaagd et al. 1989; Spaink et al. 1989; Wang and Stacey 1991; Goethals et al. 1992; Göttfert 1993). Expression of nodA from R. leguminosarum bv. viciae is attenuated if sequences between the nod box and the transcript are deleted, but removal of sequences 5’ to the nod box has no effect on activity (Spaink et al. 1987). The minimum promoter that is necessary for wild-type nod gene expression in R. leguminosarum bv. viciae consequently extends about 75 bp upstream from the beginning of the transcript.

Our deletion analysis confirms that the minimum promoter of nodB is nearly this long. We have examined this region in detail, searching for features that might explain its activity. Neither the classical nod box consensus sequence (Spaink et al. 1987), the T-N11-A LysR promoter motifs (Goethals et al. 1992), nor the 9-bp consensus repeats of Wang and Stacey (1991) are identifiable in this area. There are no significant direct or indirect repeats. We have not been able to find meaningful sequence homology between the minimal nodB promoter and any other prokaryotic promoter regions. Although the precise nolJ and nolX promoters have not yet been defined, we have aligned the minimal nodB promoter with sequences 5’ to the coding regions of nolJ and nolX (Sadowsky et al. 1988; Kovács et al. 1995). There were no homologies, and so the striking functional similarities of the three promoters must be based on features other than sequence conservation.

Although the deduced amino acid sequence of nodB has no significant similarity to other known polypeptides, NolW (Meinhardt et al. 1993) is homologous to proteins that function as part of Type III secretion systems of gram-negative bacteria (Cornelis 1994; Salmond 1994). Some of these proteins, including HrpA of Pseudomonas solanacearum (Gough et al. 1992; VanGijsegem et al. 1995), HrpA1 of Xanthomonas campestris pv. vesicatoria (Fenselau et al. 1992; Wengelnik et al. 1996), and HrpH of P. syringae pv. syringae (Huang et al. 1992), are present in plant pathogens, where they are thought to function in the release of elicitors of the hypersensitive reaction (Salmond 1994). The genes that encode them are expressed under conditions of nutrient limitation and embedded within complex operons. Although nodW is part of a multigenic cultivar-specificity region, it is monocistronic and positioned such that its expression likely influences that of nodB and vice versa (Beck and Warren 1988). Now that the nodB/nolW control region has been defined, it should be possible to precisely sort out the interactions between these two important promoters.
ACKNOWLEDGMENTS

This work was supported by competitive research grants from the United States Department of Agriculture/National Research Initiative and by funds from the Missouri Agricultural Experiment Station, where is Journal Series No. 12,563.

LITERATURE CITED

Vol. 10, No. 1, 1997 / 141