Analysis of Acidic and Basic Chitinases from Tobacco and Petunia and Their Constitutive Expression in Transgenic Tobacco

Huub J. M. Linthorst,1 L. C. van Loon,1 Clemens M. A. van Rossum,1 Andreas Mayer,1 John F. Bot,1 Jeroen S. C. van Roekel,1 E. Josien S. Meulenhoff,2 and Ben J. C. Cornelissen2

1Department of Biochemistry, Gorlaeus Laboratories, Leiden University, 2333 CC Leiden, and 2MOGEN International N.V., 2333 CB Leiden, The Netherlands. Received 15 February 1990. Accepted 5 March 1990.

cDNA clones of messenger RNAs for acidic and basic chitinases were isolated from libraries of tobacco mosaic virus-infected Samsun NN tobacco and petunia. The tobacco cDNA clones for acidic chitinase fell into two different groups, whereas all petunia cDNA clones had the same sequence. Also, tobacco genomic clones were isolated and one was characterized. This genomic clone, corresponding to one of the cDNA clones, showed that this acidic chitinase gene contains two introns. The amino acid sequences of the acidic chitinases from tobacco, as deduced from the cDNA clones, fully agreed with partial sequences derived from peptides obtained from purified tobacco-derived pathogenesis-related proteins PR-P and PR-Q. The deduced amino acid sequences showed that PR-P and PR-Q are 93 and 78%, respectively, identical to the petunia enzyme. All deduced chitinase sequences indicated the presence of an NH$_2$-terminal, highly hydrophobic signal peptide. In addition, the polysaccharide-binding domain present at the NH$_2$-terminus of basic chitinases from mature tobacco is not present in these acidic chitinases. Furthermore, the complete coding sequence for the petunia chitinase, constructed downstream of the cauliflower mosaic virus 35S promoter, was used to transform tobacco. The resulting chimeric gene was constitutively expressed, and the petunia enzyme was targeted to the extracellular fluid. In contrast, a basic chitinase of tobacco, expressed from a chimeric gene, was found in total leaf extracts but not in preparations of extracellular fluid.

Additional keywords: extracellular chitinase, Nicotiana tabacum, Petunia × hybrida, protein targeting, vacuolar chitinase.

Plants infected by pathogens such as viruses, fungi, or bacteria sometimes respond in a hypersensitive way by forming localized necrotic lesions. Lesion formation is established by a lignification of the tissue surrounding the infection site, which in many cases provides a physical barrier against the systemic spread of the pathogen. Furthermore, upon infection with such a necrotizing pathogen, the plant may acquire resistance to a subsequent pathogenic attack by a fungus, bacterium, or virus (Gianinazzi 1983). Induction of this resistance is accompanied by the de novo synthesis of proteins that before infection are present in the plant in low amounts, if at all. Among these proteins is the group of so-called pathogenesis-related (PR) proteins, which can be subdivided into several classes of serologically related proteins (for reviews see Fritig et al. 1989; Van Loon 1989; Bol et al. 1990). PR proteins, first described in tobacco, were characterized initially as being extracellular (Parent and Asselin 1984) and relatively protease-resistant and having low pI values (Van Loon 1985). However, recently it was found that serologically related proteins with similar enzymatic activities exist intracellularly, possibly accumulating in the central vacuole (Van den Bulcke et al. 1989; Mauch and Staehelin 1989). In tobacco these intracellular proteins are mostly basic (Kauffmann et al. 1987; Legrand et al. 1987).

The concomitant induction of resistance and the synthesis of PR proteins have led to speculations about a role for these proteins in the resistance to pathogens (Fritig et al. 1989; Van Loon 1989; Bol et al. 1990). Several proteins induced by tobacco mosaic virus (TMV), notably PR-1 and a glycin-rich protein (GRP), are also highly inducible by salicylate (Hooft van Huijsduijnen et al. 1986a). The fact that salicylate treatment also induces virus resistance (White 1979; Hooft van Huijsduijnen et al. 1986a) suggests a function of these proteins in the acquired resistance of tobacco to virus infection. Furthermore, analysis of cDNA clones has indicated amino acid sequence similarity between PR-S (according to the newly proposed nomenclature PR-S [Van Loon et al. 1987]) and a protein from maize, which is an inhibitor of digestive enzymes α-amylase and protease of certain insects (Cornelissen et al. 1986; Richardson et al. 1987), suggesting a function of PR-S in the resistance to insect attack. However, studies with transgenic plants constitutively expressing PR-1, GRP, or PR-S have failed to show any direct involvement in the resistance to viruses or insects (Linthorst et al. 1989; Cutt et al. 1989; Linthorst et al. 1990).

Thus far, the only PR proteins for which an enzymatic activity is known are the acidic chitinases PR-P and PR-Q (PR-3a and PR-3b, respectively [Van Loon et al. 1987]).

Nucleotide and/or amino acid sequence data has been submitted to EMBL/GenBank with the following accession numbers: tobacco acidic chitinase PR-Q, X51425; tobacco acidic chitinase PR-P, X51426; and petunia acidic chitinase, X51427.

© 1990 The American Phytopathological Society

252 Molecular Plant-Microbe Interactions
and their basic counterparts (Legrand et al. 1987; Shinshi et al. 1987) and the acidic β-1,3-glucanases PR-2, PR-N, and PR-O (PR-2a, PR-2b, and PR-2c, respectively [Van Loon et al. 1987]) and their basic equivalents (Kauffmann et al. 1987; Felix and Meins 1985). These proteins are capable of hydrolyzing the polysaccharides chitin and β-1,3-glucan in vitro. Both polysaccharides are present in the cell walls of many fungi (Wessels and Sietsema 1981). It has indeed been shown that chitinases (Schluumbaum et al. 1986) and combinations of chitinase and β-1,3-glucanase (Mauch et al. 1988) strongly inhibit the growth of a number of fungi on agar plates. However, whether these pathogen-induced enzymes also play a role in the resistance to fungal attack in planta is still not known. In addition, it should be noted that genes encoding basic chitinases and β-1,3-glucanases are constitutively expressed in tobacco roots (Memelink et al. 1990), and that the chitinases PR-P and PR-Q and a protein serologically related to the acidic glucanases are synthesized in specific flower organs during flower development (Lotan et al. 1989). As a next step in a series of experiments aimed at unraveling the biological function of PR proteins, we have isolated and characterized cDNA and genomic clones encoding several chitinases.

MATERIALS AND METHODS

Synthesis and analysis of cDNA libraries. Polyadenylated RNA was isolated from leaves of Samsun NN tobacco 4 days after infection with TMV and from leaves of Petunia × hybrida Hort. Vilm., inbred line R27. The tobacco cDNA library was made according to the lambda ZAP-cDNA synthesis and cloning system of Stratagene (La Jolla, CA). In short, tobacco cDNA was made using a primer containing oligo(dT) and an XhoI site for the synthesis of the first strand. Second strand DNA was made using RNase H and Escherichia coli DNA polymerase I. Following T4 DNA polymerase incubation, ligation to EcoRI adapters, and restriction with XhoI, the cDNA was ligated to lambda DNA arms. The petunia cDNA was made with oligo(dT) as the first strand primer and with RNase H and DNA polymerase I being used for the second strand (Gubler and Hoffman 1983). After T4 DNA polymerase incubation, ligation to EcoRI linkers, and restriction with EcoRI, the cDNA was ligated into the unique EcoRI site of lambda gt11 DNA (Young and Davis 1983). After packaging, recombinant bacteriophages were screened for the presence of chitinase-DNA-specific sequences using 32P-labeled cDNA from tobacco cDNA clones PROB30 and PROB3 that corresponded to acidic and basic chitinases, respectively (Hooft van Huijsduijnen et al. 1987). Positive clones hybridizing to each of the probes were isolated, and the cDNA inserts, or restriction fragments thereof, were subcloned into M13 derivatives tg130 and tg131 (Kieny et al. 1983).

Dideoxy sequencing (Sanger et al. 1977) was performed using a universal M13 DNA primer or with synthetic chitinase-DNA-specific oligonucleotides. To obtain a full-length coding sequence for the basic chitinase of tobacco, two synthetic complementary oligonucleotides, containing the missing five codons at the 5' end of the coding region, were annealed and ligated to a nearly full-length cDNA clone for basic chitinase. The resulting clone (Tbc1) contained a full-length coding region as determined by sequencing.

Analysis of genomic sequences. A genomic DNA library in lambda Charon 35 of Samsun NN tobacco was screened for the presence of acidic chitinase DNA sequences using PROB30 DNA as a probe (Cornelissen et al. 1987). Chitinase-specific sequences were obtained from the phage DNAs by serial transcription with Taq-DNA polymerase (Saike et al. 1988) using synthetic oligonucleotide primers with sequences based on the sequence of tobacco chitinase cDNA clones Tach1 and Tach3. The resulting DNA was subsequently cloned for sequencing.

Sequence analysis of peptides. PR proteins P and Q were purified from tobacco leaves infected with TMV (Legrand et al. 1987) and cleaved with N-chlorosuccinimide (Lischwe and Ochs 1982). The cleavage products were electrophoresed in a denaturing polyacrylamide gel and transferred to a polyvinylidene difluoride membrane. The regions of the membrane containing cleavage products of approximately 7 kDa were cut out and sequenced using an Applied Biosystems pulse-liquid sequencer (Model 477A) coupled on-line to a PTH analyzer (Aberdeen Amino Acid Sequencing Facility, Aberdeen, U.K.).

Transformation of tobacco and analysis of transgenic plants. The complete chitinase coding region of both tobacco cDNA clone Tbc1 and petunia cDNA clone Pach1 was tailored onto a BamHI fragment, which subsequently was cloned into BamHI-linearized vector pMOG181. On an EcoRI-HindIII fragment, this vector contains an expression cassette consisting of the cauliflower mosaic virus 35S promoter with a double enhancer, a unique BamHI site, and the nopaline synthase transcription terminator. The expression units of the newly obtained constructs with the chitinase coding sequences in the right orientation behind the 35S promoter were cloned into the binary vector pMOG23 (Sijmons et al. 1990). These constructs were subsequently transformed into tobacco leaf disks, upon which plants from kanamycin-resistant shoots were regenerated (Linthurst et al. 1989). RNA and protein blot analyses were used to assay the expression of transgenes in these plants (Linthurst et al. 1989). Protein from the extracellular fluid was isolated as described by Parent and Asselin (1984).

RESULTS

Analysis of cDNA clones. Previously, we reported that differential hybridization of a cDNA library of TMV-infected Samsun NN tobacco resulted in the isolation of cDNA clones corresponding to several classes of PR proteins (Hooft van Huijsduijnen et al. 1986b). Upon sequencing, two classes of these clones represented by PROB30 and PROB3 were found to correspond to acidic and basic chitinases, respectively (Hooft van Huijsduijnen et al. 1987; Shinshi et al. 1987). These cDNA clones were not full-length. Here we used PROB30 and PROB3 to screen a new cDNA library of tobacco. In addition, a cDNA library of petunia was screened with PROB30 as a probe.

From the tobacco and petunia cDNA clones selected with PROB30, five of each were characterized by sequence
The tobacco cDNA clones could be divided into two groups. Group 1, represented by clones Tach1 and Tach12, corresponded to PROB3O; the clones in group 2 were represented by clone Tach3. All petunia cDNA clones had the same sequence. The clones that were sequenced contained the complete open reading frames for acidic chitinases.

Figure 1 shows the nucleotide sequences of each group. The sequence of tobacco chitinase cDNA clones of group 1 (clones Tach1 and Tach12) is given. The differences in the other tobacco sequence (clone Tach3) are indicated above the sequence of Tach1 and Tach12, and differences in the petunia sequence (clones Pach1 and Pach5) are indicated below it. Also shown are the initiation and termination triplets of the longest open reading frames. At the 3’ termini, the positions that were found to be alternative polyadenylation sites in the respective clones of each group being characterized are indicated.

Figure 2 shows the complete amino acid sequence of the tobacco acidic chitinase encoded by clone Tach1. Differences in the tobacco acidic chitinase encoded by clone Tach3 are given above this sequence; differences in the petunia chitinase (clone Pach1) are shown below this sequence. Both tobacco enzymes are 253 amino acid residues long. whereas the petunia chitinase contains 254 amino acid residues.

Screening of the tobacco cDNA library with PROB3 yielded a nearly full-length clone. A comparison showed that this clone was identical to clone pCHN50, which encodes a basic chitinase of tobacco and which was isolated by Shinshi et al. (1987). Because our clone lacked the leader sequence of the mRNA and the first 13 nucleotides of the open reading frame, sequence information on the highly similar tobacco basic chitinase encoded by clone pCHN48 (J. M. Neuhaus, personal communication; Shinshi et al. 1990) was used to complete the coding sequence by ligitation of a synthetic restriction fragment. The clone thus obtained was designated Tbc1.

Analysis of genomic clones. A cDNA library of Samsun NN tobacco was screened (Cornelissen et al. 1987) with the insert of PROB30 as a probe. The recombinant phages that were obtained could be divided into three groups as a result of restriction enzyme analyses of phage DNA. Based on the nucleotide sequence of cDNA clone Tach1, synthetic oligonucleotides were synthesized colinearly with nucleotides 1 to 22 and complementary to nucleotides 830 to 854 of clone Tach1. These oligonucleotides were used in a polymerase chain reaction (PCR) with DNA of the genomic clones CHA1, CHA16, and CHA18, representing the three groups. The PCR resulted in the synthesis of DNA fragments 200 to 400 nucleotides longer than expected from the cDNA sequences, suggesting the presence of introns in the genomic DNA. To investigate this further, the 1,200-nucleotide fragment that resulted from the PCR and synthesized on CHA18 DNA was cloned and sequenced.

Fig. 1. Nucleotide sequences of cDNA clones for tobacco and petunia acidic chitinases. The sequence of tobacco cDNA clone Tach1 is given, supplemented with 24 extra 3’ terminal nucleotides of Tach12. Indicated above are the differences in the sequence of tobacco clone Tach3, and indicated below are the differences in the sequence of petunia clone Pach1 (supplemented with 10 extra 5’ terminal nucleotides of petunia cDNA clone Pach5). Gaps (dashes) were introduced for optimal alignment. The positions of the initiation and termination triplets of the largest open reading frames are given (fat arrows). The blocked nucleotides indicate the positions of alternative polyadenylation sites in different clones (thin arrows).
PR-P WTPSADQSANRPYGVTNIEGIE-GVPNAAVE--IGY
PR-Q WTPSADQSAN--VPGY

Fig. 3. Amino acid sequences of peptides obtained after cleavage of tobacco chinatases PR-P and PR-Q. Bold letters indicate unambiguously characterized amino acid residues; thin letters give the most probable amino acid residues, and dashes indicate residues that could not be positively identified.

The primary structure was identical to the insert of Tach1, except for the presence of a G residue in the coding sequence corresponding to the A residue at position 606 in Figure 1. Furthermore, the genomic sequence contains two introns (sequence not shown). The first intron is located between nucleotides 293 and 294 in the sequence of Tach1 (Fig. 1) and has a length of 195 base pairs. The second intron was 184 base pairs long and is located between nucleotides 396 and 397. The splice donor and acceptor sites of both introns agree fully with the splice consensus sequence.

Sequence of peptides from PR-P and PR-Q. PR proteins P and Q were purified from tobacco leaves infected with TMV and cleaved with N-chlorosuccinimide. Upon separation by electrophoresis, peptides of approximately 7 kDa were transferred to polyvinylidene difluoride membranes and sequenced by automated Edman degradation. The amino acid sequences that were obtained are shown in Figure 3. From PR-P, a stretch of 43 residues was obtained, whereas 16 residues were obtained from the PR-Q peptide. Since N-chlorosuccinimide cleaves after tryptophan residues, the first residue in both peptides must be tryptophan. The PR-P and PR-Q peptide sequences appeared to differ in two residues, which made it possible to identify the tobacco cDNA clones. The PR-P sequence was completely identical to the deduced amino acid sequence in cDNA clone Tach1 and genomic clone CHA18; the PR-Q sequence was identical to the one in clone Tach3.

Similarities to other proteins. The deduced amino acid sequences of the proteins encoded by cDNA clones Tach1, Tach3, and Pach5 were compared with each other (see Fig. 2) and with the sequence of the basic chinatase deduced from cDNA clone Tbc1. The identity percentage based on the number of identical amino acid residues in similar positions between the two tobacco acidic chinatases was 93%, between the petunia chinatase and the enzyme encoded by Tach1 was 79%, and between the petunia enzyme and that encoded by Tach3 was 77%. All three proteins had a highly hydrophobic NH2-terminal region of approximately 20 amino acid residues. Between the two tobacco proteins this region contained only two different amino acids, but the petunia chinatase had eight differences in comparison to the tobacco enzymes in the corresponding NH2-terminal part.

The amino acid sequence similarity between the acidic (253 residues) and basic (324 residues) chinatases of tobacco was only 57% (see Fig. 4A). Figure 4B shows a schematic representation of the acidic and basic chinatases. The NH2-terminal hydrophobic region of 24 residues of the basic chinatase as deduced from the sequence of cDNA clones (data not shown, Shinshi et al. 1987) is not present in the mature protein (Shinshi et al. 1987) and apparently functions as a signal peptide. The schematic comparison shows
that the region immediately following the signal peptide in the basic enzyme is not present in the acidic proteins. This region of approximately 50 amino acid residues somewhat resembles each of the four similar chitin-binding domains of wheat germ agglutinin (Wright et al. 1984; Lucas et al. 1985).

Expression of chitinases in transgenic tobacco. cDNA clones Pach1 and Tbc1 were used to construct chimeric genes encoding petunia acidic chitinase and tobacco basic chitinase, respectively, under the control of the constitutive cauliflower mosaic virus 35S promoter. After transformation of tobacco and regeneration of transgenic plants, 10 independent plants of each series of transformants (Pach-transformed and Tbc-transformed plants) were analyzed for the expression of the chimeric gene. Plants showing the highest expression levels were used for the extraction of total protein and of extracellular protein.

Figure 5 shows a western blot of a denaturing polyacrylamide gel electrophoresed with proteins of the different extracts and probed with an antiserum against PR-Q. This antiserum reacted with the acidic chitinases PR-P, PR-Q, and the petunia chitinase, as well as with the two basic chitinases of tobacco, Ch32 and Ch34 (Legrand et al. 1987). As can be seen in lanes 1 and 8 of Figure 5, total protein extracts of noninfected control plants contain small amounts of the acidic and basic chitinases. However, when compared to TMV-induced control plants (lane 4), it is evident that this low level reflects only some basal expression of the chitinase genes in plants under the growing conditions used. The band in lane 2 of Figure 5, containing the total protein extract of the Pach transformant, shows the relatively weak expression of the petunia chitinase, which migrated slightly slower than did tobacco chitinase PR-Q. Apparently, this petunia enzyme was efficiently transported outside the cell (lane 3).

Lane 6 of Figure 5, containing a total protein extract of the Tbc1 transformant, shows an increased amount of a protein comigrating with the faster one of two basic chitinase bands (Ch32, compare lane 4). The absence of a band in this position in lane 7 shows that this chitinase is not present in the extracellular fluid. This is in agreement with the finding that the basic chitinases induced in nontransformed control plants by TMV infection accumulated intracellularly (Fig. 5, lane 5; Van Loon and Gerritsen 1989).

DISCUSSION

We have isolated and characterized cDNA clones with complete coding regions for chitinases from tobacco and petunia. The acidic chitinases encoded by cDNA clones Tach1 and Tach3 corresponded to PR-P and PR-Q of Samsun NN tobacco, respectively, as was shown by protein sequence analysis. Sequence analyses of genomic clone CHA18 showed that it corresponded to the cDNA sequence encoding PR-P. However, there was a difference in one nucleotide when comparing this genomic clone to the three PR-P cDNA clones characterized (a G instead of A residue at position 606 in Fig. 1). This difference resulted in an amino acid change (cysteine instead of tyrosine at position 286).
ACKNOWLEDGMENTS

We gratefully acknowledge the assistance of Menno Knetisch, Lennart Holterman, Leo Melchers, Jan Pen, Theo Hendriks, and Frans Brederode and are indebted to Peter van den Elzen for helpful discussions and continuous interest. Thanks are due to Bernard Fritig and coworkers for the anti-PR-Q antiserum and their hospitality and help while one of us (J.M.) was at their laboratory. We also thank John Ryals for communicating his results before publication and Jean Marc Neuhaus for providing amino acid sequence data.

This work was sponsored in part by the Foundation for Technical Sciences (STW), with financial support from the Netherlands Organization for Scientific Research (NWO).

LITERATURE CITED

