Link to home

Systematic Mutagenesis of All Predicted gntR Genes in Xanthomonas campestris pv. campestris Reveals a GntR Family Transcriptional Regulator Controlling Hypersensitive Response and Virulence

September 2011 , Volume 24 , Number  9
Pages  1,027 - 1,039

Shi-Qi An, Guang-Tao Lu, Hui-Zhao Su, Rui-Fang Li, Yong-Qiang He, Bo-Le Jiang, Dong-Jie Tang, and Ji-Liang Tang

State Key Laboratory for Conservation and Utilization of Subtropical Agro-biosciences, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China


Go to article:
Accepted 24 April 2011.

The GntR family is one of the most abundant and widely distributed groups of helix-turn-helix transcriptional regulators in bacteria. Six open reading frames in the genome of the plant pathogen Xanthomonas campestris pv. campestris were predicted to encode GntR regulators. All six of the predicted GntR-encoding genes were individually mutagenized and mutants from five of them were successfully obtained. Plant disease response assays revealed that one, whose product belongs to the YtrA subfamily and has been named HpaR1, is involved in the hypersensitive response (HR) and virulence. Electrophoretic mobility shift assays and in vitro transcription assays revealed that HpaR1 could repress its own transcription level through binding to its promoter sequence, indicating an autoregulatory feedback inhibition mechanism for HpaR1 expression. Promoter-gusA reporter and reverse-transcription polymerase chain reaction analyses revealed that HpaR1 positively and negatively affects the expression of HR and pathogenicity (hrp) genes in host plant and standard media, respectively. Constitutive expression of the key hrp regulator, hrpG, in the hpaR1 mutant could bypass the requirement of HpaR1 for the induction of wild-type HR, suggesting that HpaR1 regulates the expression of hrp genes that encode the type III secretion system via hrpG.



© 2011 The American Phytopathological Society