Link to home

Stem Rust Spores Elicit Rapid RPG1 Phosphorylation

December 2010 , Volume 23 , Number  12
Pages  1,635 - 1,642

Jayaveeramuthu Nirmala,1 Tom Drader,2 Xianming Chen,3 Brian Steffenson,4 and Andris Kleinhofs1,2

1Department of Crop and Soil Sciences, 2School of Molecular Biosciences, and 3United States Department of Agriculture–Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164, U.S.A.; 4Department of Plant Pathology, University of Minnesota, St. Paul 55108, U.S.A.


Go to article:
Accepted 11 July 2010.

Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutants encoding an RPG1 protein with an in vitro inactive kinase domain fail to phosphorylate RPG1 in vivo and are susceptible to stem rust, demonstrating that phosphorylation is a prerequisite for disease resistance. Protein kinase inhibitors prevent RPG1 phosphorylation and result in susceptibility to stem rust, providing further evidence for the importance of phosphorylation in disease resistance. We conclude that phosphorylation of the RPG1 protein by the kinase activity of the pK2 domain induced by the interaction with an unknown pathogen spore product is required for resistance to the avirulent stem rust races. The pseudokinase pK1 domain is required for disease resistance but not phosphorylation. The very rapid phosphorylation of RPG1 suggests that an effector is already present in or on the stem rust urediniospores when they are placed on the leaf surface. However, spores must be alive, as determined by their ability to germinate, in order to elicit RPG1 phosphorylation.



© 2010 The American Phytopathological Society