Link to home

Activation of hsr203, a Plant Gene Expressed During Incompatible Plant-Pathogen Interactions, Is Correlated with Programmed Cell Death

June 1998 , Volume 11 , Number  6
Pages  544 - 554

Dominique Pontier , 1 , 3 Maurice Tronchet , 1 Peter Rogowsky , 2 Eric Lam , 3 , and Dominique Roby 1

1Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR CNRS / INRA 215, BP27, 31326 Castanet-Tolosan Cedex, France; 2RCAP, ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; 3AgBiotech Center, Foran Hall, Dudley Road, P.O. Box 231, Cook College, New Brunswick, NJ 08903-0231, U.S.A.


Go to article:
Accepted 20 February 1998.

hsr203J is a tobacco gene whose activation is rapid, highly localized, and specific for incompatible interactions between tobacco and the bacterial pathogen Ralstonia solanacearum. The effect of other hypersensitive response (HR)-inducing pathogens and elicitors has been tested with transgenic plants containing the hsr203J promoter-GUS reporter gene fusion, and confirms the generality of the preferential inducibility of the hsr203J gene promoter during incompatible interactions: bacterial and viral pathogens inducing an HR in tobacco were able to induce the promoter fusion, as were inducers of HR-like responses such as harpin, elicitins, and PopA1 proteins. A tomato hsr203 homologous cDNA was isolated (Lehsr203) and used to examine the effect of avr gene products on the expression of such genes. Lehsr203 was shown to be rapidly and transiently induced in leaves of the tomato Cf-9 line, following Avr9 product infiltration, but not in those of the Cf-0 line. Among potential effectors of HR or resistance such as H2O2, salicylic acid, methyl jasmonate, and 2,6-dichloro-isonicotinic acid (INA), none is able to induce a significant increase in promoter activation. In contrast, heavy metals that cause leaf necrosis can trigger such an activation. In addition, hsr203-GUS fusion expression is detected in transgenic tobacco lines expressing the bO gene and exhibiting spontaneous HR-like lesions. Taken together, these results demonstrate a strong correlation between hsr203 and genetically controlled cell death in tobacco and tomato. The expression of this gene should be a useful marker for programmed cell death occurring in response not only to diverse pathogens, but also to diverse death-triggering extracellular agents.



© 1998 The American Phytopathological Society