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ABSTRACT
Gleason, M. L., Taylor, S. E., Loughin, T. M., and Koehler, K. J. 1994. Development and
validation of an empirical model to estimate the duration of dew periods. Plant Dis. 78:1011-1016.

An empirical model to estimate the occurrence and duration of dew periods was developed
using hourly data for relative humidity (RH), air temperature, and wind speed from June
to September 1990 for Ames, lowa. After using a nonparametric classification procedure called
CART to eliminate periods in which dew occurrence was unlikely, stepwise linear discriminant
(SLD) analysis was performed with categories of measured dew (0 = no dew, 1 = dew) as
the dependent variable. The resulting CART/SLD model and an alternative model that assumed
dew was present when RH > 909 were validated by using hourly data from 13 weather stations
in ITowa, Kansas, Nebraska, and Illinois during April through October 1992. For 17,487 potential
dew hours, both models predicted the mean duration of dew periods within 1 hr, but mean
square error was considerably larger for the RH > 90% model than the CART/SLD model.
The CART/SLD model estimated presence or absence of dew correctly for 83.5% of the potential
dew hours compared to 78.6% for the RH > 90% model. Similarly, the CART/SLD model
predicted the duration of dew periods within £2 hr on 76.0% of 1,502 nights compared to
67.2% of nights for the RH > 90% model. For both models, size distribution of errors in
estimating dew duration was approximately normal for three weather stations, skewed toward
overestimation for eight stations, and skewed toward underestimation for two stations. After
further modification, the CART/SLD model could provide dew-period estimates over broad
geographical areas for disease-warning systems that are driven by wetness duration and

temperature.

Additional keywords: disease prediction, integrated pest management, weather models

The duration of wetness periods is a
key input for disease-warning systems,
because many fungal and bacterial
pathogens are active on plant surfaces
only when free water is present (3). Al-
though the advent of electronic wetness
sensors (5,8,12) and automated, pro-
grammable dataloggers has made real-
time measurement of wetness-period
duration far more convenient than in the
past (14), U.S. growers have been hesi-
tant to implement disease-warning sys-
tems driven by wetness data. Part of their
apparent reluctance may result from the
cost and unfamiliarity of wetness-mea-
suring equipment and the labor required
to monitor it (3).

An alternative to measuring wetness
duration is to estimate it with models
that use measurements of other meteo-
rological variables. Relative humidity
(RH) thresholds, especially RH > 90%,
are used as indicators of dew (25) and/
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or rain, but their accuracy is often un-
satisfactory (6,15,18,24,25). Multiple
regression based on RH, wind speed, and
minimum air temperature was used to
estimate dew-period duration at an
Oregon weather station, but prediction
accuracy was poor when the model was
tested at a nearby site (4). In Ontario,
a regional wetness-estimation model
based on air temperature and dew point
depression, and calibrated with wetness
measurements at several base stations,
provided wetness estimates for the TOM-
CAST disease-warning model on toma-
toes, which resulted in disease control
equivalent to that achieved with mea-
sured wetness duration (9). Several
physical models use energy balance
approaches to predict duration of wet-
ness caused by dew, rain, or both (12).
These models use data either from stan-
dard weather stations (18) or measured
in or above crop canopies (17). The
appropriateness of particular wetness-
estimation models is dictated by oper-
ational factors such as the purpose of
the work, the climate, the nature of the
crop canopy, and the type and availabil-
ity of meteorological inputs (12).
Automated weather stations in the
United States and Canada proliferated

rapidly during the 1980s, and over 800
permanent stations are now in use (16).
Many states in the midwestern United
States have a high density of weather
stations collecting hourly data that is in
the public domain. These stations routinely
measure rainfall (mm) and RH, but not
wetness duration. If measurements from
these stations could be used to estimate
dew duration with acceptable accuracy,
these estimates, together with rainfall
data, could form the basis of a regional
wetness-duration reporting system. Such
a system would be advantageous because
it would enable growers to use many
weather-based disease-warning systems
without individually having to bear the
costs and other burdens of weather
monitoring.

The purposes of this study were 1) to
develop and validate an empirical model
to estimate dew duration from public
domain weather station data gathered in
four midwestern states, and 2) to com-
pare model performance with another
model based on periods of RH >90%. A
preliminary report has been published (10).

MATERIALS AND METHODS
Weather data. Weather stations were
located on mowed turfgrass on unob-
structed sites. CR-10 or CR-21X data-
loggers (Campbell Scientific, Logan, UT)
were programmed to record data from
electronic sensors at |-min intervals and
to output hourly averages of air temper-
ature (T,,;) and RH at [.5- or 2.0-m
height, wind speed at 3.0- or 10.0-m
height, and hourly rainfall totals.
Wetness duration was recorded by flat-
plate electronic impedance grids (Model
237, Campbell Scientific). To imitate the
emissivity of leaves, all wetness sensors
were spray painted before use with one
layer of black paint followed by two
layers of off-white latex paint, and heat-
treated to fully dry the paint. The com-
position of the paints is proprietary
(Robert Olson, 123 Mclntosh Dr., Savan-
nah, GA 31406, personal communication).
Wetness sensors were calibrated in the
laboratory before field use by orienting
sensors at a 45° angle to the bench top
and misting with water from a spray
bottle. Kiloohm (kohm) output was
recorded by a datalogger at 5-min inter-
vals until the sensor face seemed to be
dry. The kohm value associated with the
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time of dryoff was used as a threshold
for sensor response. For all sensors, a
threshold value of 900 kohm coincided
with dryoff within 15 min; therefore, 900
kohm was used as the threshold value
for all sensors. In the field, wetness
sensors were oriented 45° from horizon-
tal and faced north at a height of 30 cm.
Dataloggers were programmed to record
the proportion of each hour with sensor
readings <900 kohm as wet periods.
Model development. Hourly weather
data gathered at the Iowa State Univer-
sity Agronomy Farm near Ames from
11 June to 7 Sept 1990 were used in model
development. The data set was edited
first by visual inspection to eliminate
hours with out-of-range or clearly
erroneous values. Hours between 8 a.m.
and 7 p.m. were deleted because dew was
assumed to be unlikely during this
period. In addition, dates on which mea-
surable rainfall occurred were deleted.
Dew point depression (D = T, — T,
poin), Wind speed (W) (meters per
second), and RH served as predictor
(independent) variables. The dependent
variable was classified as a 0 (dry) or
1 (wet) indicator of wetness. Hours were

classified as wet if the sensor registered
wetness for the entire hour or if the
proportion of time the sensor was wet
was greater than the proportion from the
previous hour.

Next, a nonparametric classification
procedure called CART (2) was used to
identify thresholds of W, D, T,;,, and RH
beyond which dew formation was found
to be unlikely. CART created a binary
classification tree, consisting of nodes
(referred to here as categories) and
branches, to distinguish between wet (1)
and dry (0) hours. All hours appeared
at the initial category. Then CART
examined each of the variables and
selected one for dividing the hours into
two branches. At the end of each branch
is a new category. Categories that were
split were called decision categories, and
ones that were not split were called
terminal categories. After the classifica-
tion tree was created, each hour was
classified as wet or dry by proceeding
down the tree, beginning at the initial
category, until a terminal category was
reached. At each decision category,
CART considered W, D, RH, and T,
one at a time. For each variable, CART

Table 1. Data collection period for weather stations during 1992

State Station Start End

lowa Ames May 15 October 14
Castana June 8 August 30
Chariton June 7 October 19
Crawfordsville June 23 October 19
Sutherland June 8 October 19

[linois Bondville June 9 October 1
Monmouth June 12 October 1
Orr June 13 October 1

Nebraska Sidney May 20 November 1
Havelock April 14 November 1
Holdrege June 11 November 1

Kansas Wichita July 31 November 1
Tribune July 31 November 1
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Fig. 1. Location of automated weather stations from which hourly data were taken during
the project. The CART/SLD model was developed with 1990 data from the Ames, Iowa station;
and both the CART/SLD and the RH > 909% models were validated with 1992 data from
all 13 stations.
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found the boundary value that maxi-
mized the “purity” of the two resulting
categories as measured by the Gini
diversity index. A category was com-
pletely pure if it contained only wet hours
or only dry hours, and least pure if it
contained 50% each. After identifying the
best boundary value for each individual
variable, CART compared the results
and selected the variable that best pro-
moted the purity of the subcategories.
CART continued to split categories until
the terminal categories were entirely pure
or contained fewer than five hours. The
basic strategy in using CART was to
initially fit a very large tree with more
categories and branches than could be
justified by the data (to reduce the chance
of missing an important split) and then
pruning off unimportant categories and
branches. Cross-validation procedures
were used to determine the appropriate
amount of pruning (2).

After CART, stepwise linear discrimi-
nant (SLD) analyses (13) using the SAS
computer package (SAS Institute, Cary,
NC, 1989) were used to develop classi-
fication rules for hours that did not
exceed any threshold created by CART.

Model validation. The CART/SLD
model was validated with hourly data
from 13 weather stations in Iowa,
Kansas, Nebraska, and Illinois, recorded
between 17 April and 31 October 1992
(Fig. 1 and Table 1). Data sets were
edited as described above, and dew-
period timing and duration as estimated
by the CART/SLD model were com-
pared with measurements by wetness
sensors. An alternative model, RH >
90%, which assumed dew was present at
RH > 90% (22,23,25), was also tested
and compared with the CART/SLD
model. Estimates of dew-period duration
for each location were evaluated by cal-
culating the difference between measured
and estimated hours of dew per night,
the mean square error (the mean of the
squared nightly differences), and the
percentage of dew periods whose esti-
mated duration was within +2 hr of
measured duration. The size distribution
of wetness-duration errors (measured—
estimated hours) for each station was
compared by graphing the errors. Accu-
racy of the timing of model-estimated
dew was evaluated for each location by
calculating the percentage of hours in
which estimated dew coincided with
measured dew.

RESULTS

Validation data sets. After preliminary
editing of data from the 13 stations for
1992, a cumulative total of 17,487 hr,
representing 1,502 nights, remained
eligible for validating the model.

CART analysis. The CART procedure
assigned the hourly data to one of four
categories: 1) D = 3.7 C; 2) D < 3.7
C, W = 2.5 m/sec, and RH < 87.8%;



3) D<3.7Cand W < 2.5 m/sec; and
4) D <3.7C, W =246 m/sec, and RH
= 87.8% (Fig. 2). A high proportion of
hours in categories 1 and 2 (Fig. 2) were
classified as nondew hours, but cate-
gories 3 and 4 could not be discriminated
clearly into either dew or nondew cate-
gories by this method. Hence, SLD
analyses were applied to categories 3 and
4 to develop equations to classify these
hours. For hours in category 3, dew was
assumed to be present if [(1.6064 Vv T,;,)
+(0.0036 T,,%) + (0.1531 RH) — (0.4599
WX D) —(0.0035 T,, X RH)]> 14.4674
.

For hours in category 4, dew was
assumed to be present if [(0.7921 VT,;)
+ (0.0046 RH?) — (2.3889 W) — (0.0390
T,, X W) + (1.0613 W X D)] > 37.0000
2).
Although RH is derived from T,;, and
D, both RH and T,;, are used in the
computations because the dew point
depression has a nonlinear relationship
with relative humidity across the range
of ambient temperatures expected during
dew formation. Using RH in addition
to D enabled us to simplify the complex-
ity of equations 1 and 2.

Accuracy and precision. Overall, both
models predicted the duration of dew
periods within 1 hr (Table 2). Mean
accuracy (measured hours-estimated
hours) of dew-duration estimates varied
considerably among stations, however.
Both models underestimated the dura-
tion of measured dew periods at nine
weather stations and overestimated it at
three stations. At Ames, the RH > 909
model overestimated, and the CART/
SLD model underestimated wetness
duration. For most stations, mean square
error was considerably higher for the RH
> 90% model than for the CART/SLD
model. Again, the magnitude of the dif-
ferences between models varied con-
siderably among stations.

The proportion of hours in which
occurrence or absence of dew was esti-
mated correctly averaged about 5%
higher (83.5% vs. 78.6%) for the CART/
SLD model than for the RH > 90%
model (Table 3). The CART/SLD model
gave a higher percentage of correct
estimates than the RH > 909% model for
each station. Also, the percent nights in
which dew duration was estimated within
2 hr was greater for the CART/SLD
model (76.0%) than for the RH > 90%
model (67.2%).

For both models, size distribution of
errors in estimating dew-period duration
per night varied considerably among
weather stations (Fig. 3). The error dis-
tribution was approximately normal for
Ames, Sutherland, and Monmouth;
skewed toward overestimation (esti-
mated hours exceeded measured hours)
for Castana, Chariton, Crawfordsville,
Tribune, Bondville, Orr, Havelock, and
Sidney; and skewed toward underestima-
tion for Wichita and Holdrege.

DISCUSSION

The CART/SLD model estimated the
duration of dew periods more accurately
and precisely than the model based on
RH > 90%. In particular, dew-duration
estimates derived by CART/SLD were
substantially less variable than estimates
from the RH > 90% model (Table 2).
This is not surprising, because the
CART/SLD model incorporates W as
well as RH. In the southeastern United
States, an extensive comparison of RH
data from mechanical hygrothermo-
graphs with data from electronic flat-
plate wetness sensors (6) concluded that

neither 85, 90, 95, nor 1009% RH could
be used reliably to estimate hours of leaf
wetness resulting from dew or rain, and
that other factors affecting wetness in
addition to RH, such as W, cloud cover,
and soil moisture, must be considered
in order to achieve acceptable accuracy
(6,18). Based on our results, the CART/
SLD model would be more reliable than
the RH > 90% model in the midwestern
United States as an input to weather-
based disease warning systems. An em-
pirical model of dew occurrence incorpo-
rating the same independent variables
was tested in Oregon (4), but this is the

All hours
7pm — 8am

excluding days with
measured rainfall

D<37%

W>2.5m/sec \W < 2.5m/sec

D2>3.7°C
Category 1
e 268:1
NO DEW
COtegory 3
use formula (1) 177:121

RH < 87.8% RH > 87.8%
Category 2 Caotegory 4
No DEW | 242 use formulo (2)

29:28

Fig. 2. Classification tree created by the CART procedure (2) for presence or absence of dew
in hourly data from a weather station near Ames, lowa in June-Sept 1990. The CART procedure
classified hours of data according to whether the occurrence of dew was unlikely (categories
1 and 2) or uncertain (categories 3 and 4) based on values of dew point difference (D), wind
speed (W), and relative humidity (RH). Next to each category is the ratio of hours in which
no wetness was measured to hours in which wetness was measured.

Table 2. Mean, variance, and mean square error of difference between measured and model-

estimated hours of dew per night

Mean hr (measured-estimated)

Mean square error*

CART/SLD CART/SLD

Location RH > 90% model model RH > 90% model model
Ames 0.75 —0.27 18.9 8.7
Castana —2.18 —1.93 18.3 11.5
Chariton —0.88 —1.36 9.3 6.4
Crawfordsville —1.19 —1.70 15.6 11.7
Sutherland —0.86 —1.88 14.4 12.5
Bondville —2.32 —1.71 12.5 6.7
Monmouth —1.30 —0.70 10.3 6.5
Orr —2.97 -3.05 19.7 18.2
Sidney —1.07 —0.08 10.9 2.5
Havelock 0.09 0.06 9.6 5.6
Holdrege 0.45 0.45 2.0 1.9
Wichita 3.34 1.65 28.5 14.1
Tribune —2.22 —1.44 13.3 7.4

Mean —0.68 —0.77 13.5 8.2

®Mean square error = X(measured-estimated)?/n, in which »n is number of nights available

for dew.
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Fig. 3. Distribution of differences of measured vs. estimated dew-period duration for the CART/SLD model and the RH > 90% model at
13 weather stations during 1992.
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first test of an empirical dew-estimation
model in the midwestern United States.

CART improved the subsequent per-
formance of SLD analysis by identifying
abrupt but physically reasonable thresh-
olds separating wet and dry hours along
boundaries between vectors of weather
variables; whereas the smooth bound-
aries available to SLD analysis alone
cannot describe these thresholds as
accurately. The formation of dew on
leaves is dependent on the simultaneous
influences of D, W, and T,,. The first
CART branching (Fig. 2) was based on
D. When D is small, slight leaf cooling
will result in dew formation; but when
D is large, it is unlikely that leaf cooling
in the natural environment would be
sufficient to permit the formation of dew.
The second branching was based on W.
When W is large, the leaf temperature
does not decrease to the extent found
under still air conditions. The third
branching was based on RH. Under
humid conditions, dew may exist even
with considerable air movement. We
used SLD in conjunction with CART to
obtain more economical models for
classifying hours that do not exceed
thresholds (Fig. 2, categories 3 and 4).

The CART/SLD model needs addi-
tional refinement before it is applied to
disease-warning systems. To calculate
total wetness duration, the CART/SLD
model must be modified to include
rainfall and irrigation. A likely source
of significant error in dew-period esti-
mation is the absence of data on cloud
cover. In southern Ontario, an energy
balance model using standard weather
station data for cloud cover in addition
to air temperature, dew point temper-
ature, and wind speed estimated dew
duration within 1 hr for exposed leaves
of four crop species (7,18). Another

source of error is the occurrence of mist
or fog, which results in wetness but does
not register as rain in tipping-bucket rain
gauges. Modeling of hourly temperature
and/or barometric pressure during clear,
cloudy, and foggy nights may reveal
relationships that help identify the
presence or absence of clouds and mist.
The differences in dew-period estimation
error patterns among weather stations
(Fig. 3) may be attributable to variations
in microtopography, to weather patterns
such as cloudy nights, to the behavior
of weather sensors, or to a combination
of these factors.

The method used to calibrate the wet-
ness sensors may also have been a source
of error. The use of wetness thresholds
obtained during the drying of sensors on
a laboratory bench can result in under-
estimating the duration of dew periods
by an average of 1.4 hr and obscures
variability among sensors in response to
dew onset (19). To measure dew duration
more reliably, wetness sensors should be
calibrated during the onset of actual dew
periods (19).

After the modifications described
above, the CART/SLD model could
have broad geographic applicability for
implementing disease-warning systems
that are driven by wetness and temper-
ature. The fact that hourly data from
most of the existing U.S. and Canadian
weather networks are in the public
domain and available in a real-time mode
should make disease-warning systems far
less expensive and more convenient to
manage than privately owned weather
stations. Physical models of dew dura-
tion, requiring only standard weather
station data for input, have also been
used successfully for regional disease-
warning schemes (9).

A limitation of weather station data

Table 3. Accuracy” of two models in predicting the timing and duration of dew at 13 weather

stations in 1992

Hours predicted correctly (%)"

Dew-period duration
estimated within 2 hr (%)°

CART/SLD CART/SLD

Station RH > 90% model model RH > 90% model model
Ames 76.7 82.6 58.0 77.5
Castana 74.6 80.0 70.2 71.6
Chariton 76.7 81.8 67.9 66.0
Crawfordsville 73.8 77.3 59.3 58.2
Sutherland 75.6 63.1 70.5
Bondville 82.0 84.0 67.5 76.3
Monmouth 79.1 83.6 65.2 74.1
Orr 72.7 74.0 52.3 54.1
Sidney 84.6 92.4 79.0 92.7
Havelock 81.5 85.7 73.5 83.0
Holdrege 91.4 92.0 90.7 91.4
Wichita 71.0 80.5 46.3 66.3
Tribune 82.2 88.4 64.2 76.8

Mean 78.6 83.5 67.2 76.0

“The standard of accuracy is wetness measured by electronic sensors.
"[Hours in which presence or absence of dew estimated correctly/n] X 100, where n = total

hours in edited data set.

‘[(Nights in which dew duration estimated correctly within £ 2 hr)/n] X 100, where n = total

number of nights in edited data set.

is that the duration of wetness within a
crop canopy is influenced by microen-
vironmental factors such as crop archi-
tecture and the position of leaves within
the canopy (12,17,18). In practice, how-
ever, weather station data recorded near
rather than within crop canopies has
been used successfully to implement
disease-warning systems for processing
tomatoes (9,11). Nevertheless, for some
crops and disease-warning systems, it will
be necessary to calibrate standard weather
station data to account for characteristics
of the crop canopy (3,20,24).

Another step needed to develop useful
regional wetness estimates is to delineate
local wetness patterns in areas between
weather stations. In southern Ontario,
when a regional model for wetness dura-
tion based on hourly values of dew point
depression was used as input for the
TOM-CAST disease-warning system,
the estimates provided data for control
of fungal diseases equivalent to those
obtained by on-site wetness measure-
ments (9). This system used’ daily
wetness-duration measurements at
regional sites to calibrate the model-
derived wetness estimates for nearby
locales. Such an approach could enhance
the accuracy of the CART/SLD model
for geographic regions of the midwestern
United States. Application of Geo-
graphic Information Systems techniques
has improved the prospects for a regional
weather-monitoring network that could
deliver reliable wetness information to
disease-warning systems. Accurate, high-
resolution, real-time estimates of rainfall
timing and amount in eastern North
America, derived from ground-based
radar (1), are now commercially avail-
able (e.g., WSI Inc., Billerica, MA, and
SkyBit, Inc., Boalsburg, PA). The
domain of weather station data could be
extended by using numerical models to
interpolate data values in the areas
between stations (20) and by estimating
the effects of the geophysical character-
istics of the local terrain on the variables
(20,21). By freeing individual growers
from the burden of monitoring the
weather, a reliable, regional weather-
monitoring network could speed the
implementation of Integrated Pest
Management tactics.
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