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ABSTRACT

Nelson, S. C., Marsh, P. L., and Campbell, C. L. 1992. 2DCLASS, a two-dimensional distance
class analysis software for the personal computer. Plant Dis. 76:427-432,

2DCLASS is microcomputer software capable of performing Gray’s two-dimensional distance
class analysis of spatial pattern of plant disease. The program allows for rapid and concise
analysis of the spatial pattern of binomial (presence/absence) data within a two-dimensional
matrix (e.g., rows and columns of plants). The procedure is particularly useful for the detection
and quantification of nonrandom spatial patterns, average cluster size, distance between or
among clusters, relative cluster location within a lattice, within-row and across-row aggregation,
and edge effects. The software also generates a map of observed spatial pattern and is tolerant
of missing data points. Instructions (with examples) for use of 2DCLASS and guidelines and
cautions for interpretation of program output are provided.

Information about spatial attributes of
plant pathogens in the environment and
of disease in plant populations provides
insight into disease progress and the de-
terminants of disease spread. Description
and quantification of spatial aspects of
pathogens and/or diseased plants en-
hance the performance of disease models
and simulators as well as the efficiency
of experimental and sampling designs in
field experiments (1).

Diverse descriptive and analytical pro-
cedures exist to characterize and quantify
spatial patterns. The procedures vary
with regard to data requirements and
their ability to determine whether dis-
eased individuals are aggregated, the rel-
ative strength of aggregation (degree of
departure from randomness), and direc-
tionality or two-dimensional orientation
of aggregation. The techniques for analy-
zing spatial patterns of diseased plants
or pathogen propagules fall into three
general categories based on type of data
required (1): position of healthy or dis-
eased plants within a row or series of
rows, quadrat or plot count data, and
distance measurements. Much phyto-
pathological research on spatial patterns
has relied on grids of quadrats, whereby
estimates of variance and means of count
or proportion data are used to quantify
spatial attributes.

Distance-based analyses have been
used successfully to describe spatial pat-
terns in ecological studies (7,8,11). These
analyses consider distances between in-
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dividuals of a population (e.g., of a par-
ticular species) within a continuous area.
An underlying assumption is that mem-
bers of the sampled population can oc-
cupy any location within the continuum.
This assumption is not met for agro-
nomic or horticultural row crops. Sev-
eral distance-based or distance-class
methods have been proposed, though sel-
dom used, for describing two-dimen-
sional spatial pattern of diseased / healthy
plants arranged or demarcated on a lat-
tice (6,9,10).

Gray et al (3) developed a two-dimen-
sional distance class analysis for charac-
terizing spatial relationships of virus-
infected plants within row crops (which
may be regarded as plant distribution
lattices). The two-dimensional distance
class method utilizes binomial data, col-
lected as the presence or absence of symp-
tomatic plant(s) in a particular quadrat
or lattice position within a rectangular
field plot. Gray’s procedure has been ap-
plied to only two pathosystems (2,4).
Adequate and accessible computer soft-
ware could expand the application of this
method of pattern analysis. This paper
provides users of MS DOS-based per-
sonal computers with a description of
software that will perform Gray’s two-
dimensional distance class analysis of
spatial pattern.

Gray’s method (3) uses a coordinate
system with the location of plants de-
scribed in terms of [ X, Y] distance values.
The distance relationship between plants,
defined by the absolute differences be-
tween their [X] and [ Y] values, is used
to assign all pairs of diseased plants to
[X, Y] distance classes. Because the total
possible number of pairs varies among
[X, Y] distance classes, the number of

pairs of diseased plants in each [X, Y]
distance class is standardized by dividing
by the total number of pairs of living
plants within the same [X,Y] distance
class. This allows for direct comparison
of standardized count frequency (SCF)
values in any [ X, Y] distance class. Com-
parison of observed and expected stan-
dardized counts in each [X, Y] distance
class is used to define and quantify the
randomness of diseased pairs of plants
and their orientation within the lattice.
Expected counts are generated by com-
puter simulations (3) performed under
the assumption of a random pattern of
diseased plants. The procedure is par-
ticularly useful for the detection of non-
random spatial pattern and for quan-
tification of average cluster size, distance
between/among clusters, relative cluster
location within the lattice, within- and
across-row aggregation, and edge effects.

Gray’s two-dimensional distance class
analysis program was written in FOR-
TRAN for a mainframe computer (3).
The program presented here, 2DCLASS,
is an adaptation of Gray’s program and
is written and compiled in the Micro-
soft QuickBASIC language (Microsoft
QuickBASIC Version 4.5., Microsoft
Corporation, One Microsoft Way, Red-
mond, WA 98052-6399). The 2DCLASS
program requires DOS 2.0 or higher.
Data for use with 2DCLASS can be pre-
pared with the aid of any word processor,
spreadsheet, or database program that
can output files in ASCII. Input data
sets are arranged in columns. The first
two columns contain X and Y coordi-
nates or “cell” indicators of the spatial
position associated with presence/ab-
sence of individuals of the population
under study (e.g., diseased plants) in in-
dividual quadrats or at specific lattice
points in a two-dimensional matrix. For
plants, for example, each one is assigned
a status code of 1, 2, or 3 that identifies
it as healthy, diseased, or missing, re-
spectively. Successive columns (columns
3 to n) can represent data from different
replications or times of observations,
data from different fields, etc. Data from
an unlimited number of disease assess-
ment dates can be stored in a single data
file. Plot layouts with up to 16,000
quadrats or planting positions (number
of rows X number of columns) may be
analyzed.
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Examples. One actual and three hypo-
thetical data sets are provided to dem-
onstrate program output and to illustrate
near-random spatial pattern and several
types of aggregation amenable to anal-
ysis via 2DCLASS. The hypothetical
data sets are provided to orient the read-
er’s eye regarding interpretation of out-
put for obvious patterns of aggregation
and to facilitate interpretation of more
subtle examples of aggregation. Each
hypothetical set of data consists of plants
arranged in a 10-column X 10-row ma-
trix. The data could represent any type
of pathogen or disease (soilborne or
aerial) or any other binomially classified
information (e.g., living vs. dead plants).
The real data (a nearly random spatial
pattern) are from an eight-column X
eight-row lattice of white clover (Tri-
folium repens L.) plants in a clover/tall
fescue (Festuca arundinacea Schreb.)
pasture during a 1991 epidemic of foliar
blight caused by Rhizoctonia solani
Kiihn (S. C. Nelson and C. L. Campbell,
unpublished). Actual output produced
by 2DCLASS is presented for the actual
data (Table 1). Stylized summaries of the
program output are presented to facil-
itate interpretation of the hypothetical
data sets (Fig. 1). The stylized summaries
represent the two components of pro-
gram output produced by 2DCLASS
(Table 1): astylized map of observed data
and a stylized representation of the dis-
tance class analysis matrix, showing sig-
nificant distance classes detected by
2DCLASS. The stylized summaries
should not be confused with actual pro-
gram output.

In reality, spatial attributes of epi-
demics may be difficult to qualify and
quantify through simple visual examina-
tion. For example, cluster shape and size,
patterns of diseased plants, orientation
and organization of clusters within a
lattice, and edge effects may not be dis-
cernible without supporting quantitative
or statistical evidence. Therefore, three
additional data sets from actual epi-
demics are presented as more subtle illus-
trations of an edge effect (Fig. 2). The
three examples vary regarding departure
from randomness, magnitude of the edge
effect, and size and shape of clusters of
diseased plants.

In a case of nearly random spatial
pattern of disease, 2DCLASS produced
an output file consisting of: 1) a map
of the input data set and 2) results of
the two-dimensional [ X, Y] distance class
analysis (Table 1). The following statis-
tics are provided for each [ X, Y] distance
class (based on » = 400 simulations):
standardized number of observed in-
fected pairs and standardized number of
expected infected pairs in each distance
class, the “level of significance” (com-
puted directly by counting the number
of times the simulated SCF exceeds the
observed SCF during the 400 simula-
tions) (3), and the 95% lower and upper
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Table 1. 2DCLASS program output for Rhizoctonia leaf blight of white clover in Wake County,
North Carolina
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LINE 2
LINE 3
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STANDARDIZED NUMBER OF OBSERVED INFECTED PAIRS
STANDARDIZED NUMBER OF SIMULATED INFECTED PAIRS
SIGNIFICANCE LEVEL
LOWER CONFIDENCE LIMIT OF SIGNIFICANCE LEVEL
UPPER CONFIDENCE LIMIT OF SIGNIFICANCE LEVEL

Column

Row 0

Row 0

Row 0

Row 0

Row 0

Row 1

Row 1

Row 1

Row 1

Row 1

Row 2

Row 2

Row 2

Row 2

Row 2

0 1 2

0.0000 0.1250 0.1250

0.0000 0.1147 0.1143

0.0000 0.2750 0.2675

0.0000 0.2437 0.2365

0.0000 0.3063 0.2985

0.1607 0.1327 0.1429

0.1155 0.1133 0.1142

0.0475 0.1675 0.1175

0.0326 0.1414 0.0950

0.0624 0.1936 0.1400

0.1042 0.1429 0.194+

0.1134 0.1121 0.1149

0.4925 0.1100 0.0000

0.4575 0.0881 0.0000

0.5275 0.1319 0.0000

3

0.1500

0.1149

0.0975

0.0767

0.1183

0.1286

0.1150

0.2800

0.2486

0.3114

0.1000

0.1138

0.5525

0.5177

0.5873

0.0625

0.1128

0.8050

0.7773

0.8327

0.0893

0.1179

0.7350

0.7041

0.7659

0.1667

0.1171

0.0425

0.0284

0.0566

5

0.0833

0.1139

0.5775

0.5429

0.6121

0.0714

0.1158

0.7650

0.7353

0.7947

0.1111

0.1116

0.3950

0.3608

0.4292

6

0.0000

0.1116

0.9000

0.8790

0.9210

0.0357

0.1136

0.8350

0.8090

0.8610

0.0833

0.1139

0.5300

0.4951

0.5649

7
0.1250
0.1122
0.2275
0.1982

0.2568

0.1429
0.1116
0.2300
0.2005

0.2595

0.2500
0.1056
0.0450
0.0305

0.0595

(continued on next page)



Row 3 0.1250 0.1429 0.1333 0.1000 0.1000 0.0667 0.0500 0.1000

Row 3 0.1143 0.1150 0.1142 0.1128 0.1161
Row 3 0.2875 0.1250 0.2000 0.5150 0.5375
Row 3 0.2558 0.1018 0.1720 0.4800 0.5026

Row 3 03192 0.1482 0.2280 0.5500 0.5724

Row 4 0.188+ 0.1250 0.1458 0.1000 0.0938
Row 4 0.1141 0.1151 0.1158 0.1148 0.1178
Row 4 0.0025 0.2750 0.1375 0.5275 0.5750
Row 4 -0010 0.2437 0.1134 0.4926 0.5404

Row 4 0.0060 0.3063 0.1616 0.5624 0.6096

Row 5 0.1250 0.0952 0.1111 0.1000 0.0833
Row 5 0.1127 0.1146 0.1126 0.1145 0.1159
Row 5 0.2500 0.5550 0.3800 0.4725 0.5950
Row 5 0.2197 0.5202 0.3460 0.4376 0.5606

Row 5 0.2803 0.5898 0.4140 0.5074 0.6294

Row 6 0.1250 0.0357 0.0833 0.1500 0.0625
Row 6 0.1163 0.1168 0.1178 0.1180 0.1167
Row 6 0.2775 0.8600 0.5775 0.2100 0.6000
Row 6 0.2462 0.8357 0.5429 0.1815 0.5657

Row 6 0.3088 0.8843 0.6121 0.2385 0.6343

Row 7 0.1250 0.0714 0.0833 0.1000 0.0000
Row 7 0.1200 0.1113 0.1121 0.1100 0.1125
Row 7 0.2300 0.4275 0.3850 0.3150 0.6450
Row 7 0.2005 0.3929 0.3509 0.2825 0.6115

Row 7 0.2595 0.4621 0.4191 0.3475 0.6785

0.1188 0.1113 0.1140
0.7675 0.6850 0.3075
0.7379 0.6525 0.2752

0.7971 0.7175 0.3398

0.1250 0.0000 0.1250
0.1135 0.1188 0.1128
0.2675 0.9250 0.2225
0.2365 0.9066 0.1934

0.2985 0.9434 0.2516

0.0556 0.0000 0.1667
0.1163 0.1179 0.1125
0.6700 0.8200 0.1375
0.6371 0.7931 0.1134

0.7029 0.8469 0.1616

0.0000 0.0000 0.2500
0.1113 0.1181 0.1188
0.7875 0.6725 0.0675
0.7589 0.6396 0.0499

0.8161 0.7054 0.0851

0.0000 0.0000 0.0000
0.1204 0.1131 0.1338
0.5675 0.4150 0.2550
0.5328 0.3805 0.2245

0.6022 0.4495 0.2855

!
Number of Distance Classes With SCFs Greater Than Expected: 2
‘Number of Distance Classes With SCFs Fewer Than Expected: 0

Time required to perform the 400 simulations: .49 minutes

confidence limits on the significance
level. In addition, the program calculates
the number of [ X, Y] distance classes with
an observed SCF significantly higher
(upper confidence limit on level of sig-
nificance <0.05) than expected (indi-
cated by a + in the body of the table)
and significantly lower (lower confidence
limit on level of significance =0.95) than
expected (indicated by a $), and the time
required to perform the n = 400 simu-

lations. Examination of Table 1 reveals
that only two [ X, Y] distance classes, [2,2]
and [4,0], have SCFs significantly higher,
and no distance classes have SCFs sig-
nificantly lower, than expected under a
random spatial pattern of infected plants.
Thus, the incidence of Rhizoctonia leaf
blight on the day of observation was
interpreted to be random.

Stylized representations of the pro-
gram output for the hypothetical data

sets illustrate: 1) an edge effect (Fig. 1A
and B), common with diseases caused by
insect-vectored pathogens (5) or with
early-season foliar diseases in newly
established field plots (S. C. Nelson and
C. L. Campbell, unpublished); 2) clusters
of diseased plants (Fig. 1C and D); and
3) within-row aggregation of diseased
plants (Fig. 1E and F). In the example
of edge effect, a departure from ran-
domness is evinced by the relatively large
number of distance classes with SCFs
significantly higher and lower (31 and
13, respectively) than would be expected
with a random pattern (Fig 1B). Vacan-
cies are included to demonstrate the tol-
erance of two-dimensional distance class
analysis for missing values. Scrutiny of
the mapped data reveals a potential edge
effect (Fig. 1A). Relevant to detection
of an edge effect are the SCFs in [X, Y]
distance classes [0-9,9] and [9,0-9]. Each
of these classes has a significantly higher
(P = 0.05) SCF than expected, which
indicates that diseased pairs often occur
at opposite edges and corners of the plot.
Conversely, that fewer pairs of infected
plants occur in or near midplot is evi-
denced by the group of significantly
lower SCFs in those distance classes in
the upper left-hand region of the two-
dimensional distance class analysis
matrix. Absence of significantly higher
SCFsin the[ X, Y] classes [0,1],[1,0], and
[1,1] confirms the absence of discrete,
relatively isodiametric clusters.

Figure 1C portrays a map of a hypo-
thetical field plot with discrete, rela-
tively isodiametric clusters of dis-
eased plants. Nonrandom distribution
of diseased pairs is indicated by those
distance classes with significantly higher
and lower (18 and 14, respectively) SCFs
than expected (Fig. 1D). An attractive
feature of Gray’s two-dimensional dis-
tance class analysis is the potential iden-
tification of “average” cluster size and
relative location within the lattice. If
clusters of infected plants are found in
the lattice, their dimensions will be evi-
dent from the distribution of the small
distance classes (low [X, Y] values) that
have SCF significantly higher (P<0.05)
than expected. Four such classes —[0,1],
[0,2], [1,0], and [I,1]—identify an
average “core cluster size” of approxi-
mately five to nine plants (Fig. 1D).
Resolution of the average core cluster
size is limited to a range of values, be-
cause the significance level calculated for
class [0,1], for example, is based on
bidirectional comparison of plants
within the matrix (i.e., each plant is
compared with all other plants in that
distance class, both to the “right” and
the “left” of itself). Two other clusters
of distance classes having SCFs signifi-
cantly higher (P < 0.05) than expected,
i.e., cluster [2,5-6], [3,5-7], [4,5-8], and
[5,6-7] and cluster [6,1] and [7,0-1], rep-
resent the relative location of clusters
within the lattice. The relative location
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and “average distance” (3) between clus-
ters is determined by the position of these
clusters in the lattice relative to the core
cluster in the upper left-hand corner of
the analysis lattice, in terms of [X,Y]
direction and distance. For example, evi-
dence for clusters of diseased individuals
in the same column(s) of the matrix and
separated by four rows is given by the
two groups of [ X, Y] distance classes with
SCFs significantly higher than expected
occurring in the [0-2] Y-value positions
in the distance class analysis matrix (Fig.
1D).

The map for the third hypothetical
situation (Fig. 1E) reveals evidence for
within-row aggregation of infected
plants. Significant, nonrandom distribu-
tion of infected pairs of plants is con-
spicuous in the two-dimensional distance
class analysis. The number of SCFs is
significantly higher (P < 0.05) than
expected in 29 distance classes and sig-
nificantly lower (P=0.95) than expected
in 17. Nonrandomness confirmed, the in-
terpretive goal is to identify the mani-
festation (cluster size and orientation)
of this nonrandomness. The 29 distance
classes with a significantly higher number
of standardized observed infected pairs
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are in classes [0,1-9], [3,0-9], and [6,0-9],
which indicates significant, lengthy,
within-row aggregation of infected pairs
of plants (Fig. 1F).

Stylized representations of program
output are provided for more subtle ex-
amples of edge effects of varying strength
(Fig. 2). During an epidemic of Stagono-
spora leaf spot, caused by Stagonospora
meliloti (Lasch) Petr., on white clover
(S. C. Nelson and C. L. Campbell, un-
published) in an eight-column X eight-
row matrix, only five of 63 distance
classes ([0,0] is ignored) are significant
(Fig. 2A and B). By itself, this is relatively
weak evidence for a nonrandom spatial
pattern of diseased plants. However, four
of the distance classes form an L-shaped
group (Fig. 2B), indicating at least two
clusters in the matrix. The significant
[X, Y] distance classes—[1,6], [2,6], and
[3,6-7]—reveal elongate, roughly rectan-
gular clusters that span several rows. The
clusters have a minimum of four plants
and are separated by one to three rows
and by six or seven columns within the
matrix, indicating a significant edge or
near-edge effect. The two nonadjacent
significant distance classes at matrix edge
—][3,7] and [6,7]—offer relatively weak
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evidence for a significant edge effect for
Stagonospora leaf spot.

A map of white clover plants in-
fected with Pseudomonas andropogonis
(Smith) Stapp in September 1991 (S. C.
Nelson and C. L. Campbell, unpub-
lished) (Fig. 2C) provides stronger evi-
dence for across-row aggregation and a
significant edge effect. The significant
adjacent [X,Y] distance classes at the
right-hand edge of the distance class an-
alysis matrix are interpreted as indicating
at least two lengthy (three to five plants)
across-row (within-column) aggregates
located at opposite edges of the plot (Fig.
2D). These[ X, Y] distance classes are also
associated with proximal significant
distance classes—[0,6] and [1,6]—and
provide evidence for the existence of at
least two roughly rectangular clusters of
five to 10 diseased plants. The significant
[X, Y] distance classes [4,0], [5,0], and
[7,0] indicate that diseased plants tend
not to occur within the same column,
especially at opposite edges.

An epidemic of summer blight, caused
by R. solani, of white clover (S. C. Nelson
and C. L. Campbell, unpublished) in an
eight column X eight row matrix of
plants was found to have a relatively
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Fig. 1. (A, C, and E) Spatial patterns of diseased plants in hypothetical 10-column X 10-row lattices showing a pronounced edge effect in
A, discrete clusters of diseased plants in C, and within-row aggregation of diseased plants in E. [| = Healthy plant, M = infected plant,
dash = vacancy. (B, D, and F) Two-dimensional distance class analysis of the hypothetical data. ® = [X, Y] class with a standardized count
frequency higher than expected (P < 0.05), O = [X, Y] class with a standardized count frequency lower than expected (P = 0.95).
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strong edge effect (Fig. 2E and F). The
magnitude of the relative strength of edge
effect in Fig. 2E is not readily apparent
when the map is compared with the
spatial pattern map of diseased plants
in Fig. 2C. 2DCLASS detected the rela-
tively higher proportion of edge infec-
tions vs. interior infections (diseased
plants not at plot edge) in Fig. 2E, re-
sulting in a significantly stronger edge
effect, at distance classes [0-6,7] (Fig.
2F). As in the previous two examples,
the edge effect is across rows. The sig-
nificant [ X, Y] distance classes [5,5-7] and
[6,5-7] illustrate a corner effect, wherein
plants near the corners of the plot tend
to be diseased.

Discussion and guidelines. Applica-
tion of the two-dimensional distance
class analysis has certain limitations. As
with many spatial pattern analyses, inter-
pretation may be meaningless without a
concurrent examination of the mapped
data. For example, although within-row
and/or across-row clustering may be de-
tected, significant edge effects may be
missed if infected pairs aggregate at only
one or two edges of the lattice. Further-
more, successive analyses of the same set
of data may result in minor variability
in results because of slight variations in
the random placement of diseased plants
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during the simulations. This variability
is a consequence of slight variability in
confidence limits between runs (some
“borderline” values for the confidence
limits may rise above or fall below the
significance levels we incorporated into
2DCLASS). A reason for performing the
large number of simulations (at least 400)
for each data set is to help stabilize the
statistics generated by the analysis (e.g.,
confidence limits, significance levels,
SCFs). We suggest that given an ade-
quate number of simulations, minor var-
iability in analytical results between
analyses will lead to the same general
interpretation, according to the criteria
used for interpretation and the confi-
dence level selected for significance.
Thus, changes in significance for some
distance classes should be interpreted
with caution, ignored, or tested further
with relaxed confidence limits.
Two-dimensional distance class anal-
ysis may be inappropriate when the num-
ber of infected plants is very small or
very large in relation to the total number
of plants in the lattice. For example, all
relevant distance classes tend to yield
significant SCFs when the proportion of
infected plants is small (e.g., 0.05), even
when the diseased plants are arranged
randomly. The number of simulations
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needed and the number of SCFs that
must be significant to claim nonrandom-
ness depend on the size of the matrix
and the proportion of plants infected.
The minimum proportion of plants in-
fected and the lattice shape and unifor-
mity of planting within the lattice may
also affect the sensitivity of the analysis
and the interpretation of results. Finally,
inherent in 2DCLASS is a tolerance for
missing data points. The question of
upper limits for the proportion of values
missing remains unanswered and should
be specified by the user.

Investigators using this analysis should
specify the guidelines used in their in-
terpretations of the results. At the pres-
ent time, our analyses of epidemics of
leaf spot on white clover in eight column
X eight row plant lattices are guided by
the following conservative criteria: 1)
minimum proportion of diseased plants
= 0.15-0.20; 2) maximum proportion of
diseased plants =0.80-0.85; 3) maximum
proportion of missing values = 0.20; 4)
minimum number of simulations = 400;
and 5) minimum percentage of signifi-
cant SCFs needed to indicate nonran-
domness = 5-10% of total number of
distance classes. The last guideline
should be tempered by knowledge of
the location of the significant SCFs,
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Fig. 2. (A, C, and E) Spatial patterns of diseased white clover plants in eight-column X eight-row lattices showing edge effects of varying
significance. [_] = Healthy plant, B = infected plant, dash = vacancy. (B, D, and F) Two-dimensional distance class analysis of the mapped
data. ® = [X,Y] class with a standardized count frequency higher than expected (P < 0.05), O = [X, Y] class with a standardized count

frequency lower than expected (P = 0.95).

Plant Disease/April 1992 431



with more weight being given to those
grouped in patterns or in discrete clus-
ters. In our work, edge effects are inter-
preted as being significant if 15-20% of
the distance classes are significant in the
outermost row and column (row 7 and
column 7) of the matrix.

The 2DCLASS software has proved
useful to us as a tool for analysis of
spatial data of several pathogens of white
clover. Improvements to the original
FORTRAN programs have enhanced
the utility of the 2DCLASS program.
The new version provides a single flex-
ible, interactive program, as opposed to
two relatively inflexible, noninteractive
programs, at reduced expense (personal
computer vs. mainframe computer).
Processing time required to perform two-
dimensional distance class analysis with
2DCLASS depends on the number of
simulations, the size of the lattice, the
proportion of infected plants, and the
speed of the computer. The data sets we
used as examples require less than | min
processing time each on a computer with
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an 80386 microprocessor and 20 MHz
operation speed. The program is written
in a relatively simple, widely used lan-
guage for which software is not expen-
sive. The 2DCLASS program source
code, the compiled program, sample data
sets, and a brief user guide can be ob-
tained free of charge by contacting the
third author.
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Salute to APS Sustaining Associates

This section is designed to help APS members understand more
about APS Sustaining Associates. Information is supplied by
company representatives. Each month features different compa-
nies. A complete listing appears in each issue of Phytopathology.

Rogers NK Seed Company. Contact: Wayne L. Wiebe, RR
1 Box 507, Woodland, CA 95695; 916/666-0986. On January
1, 1991, Rogers Brothers Seed Company and Northrup King
Vegetable Division merged to form one company. Over the
past 100 years each company has developed into a leader in
its respective vegetable seed lines. Rogers NK Seed Co., which
the combines the Rogers large seed line with the Northrup
King small seed line, is one of the largest full-line vegetable
seed companies in North America. Rogers NK Seed Co. has
a strong commitment to research. The goal of its research
is to develop, produce, and market improved agronomic and
vegetable crop cultivars. To help achieve these goals, the com-
pany has research stations throughout the United States, as
well as in Canada, Mexico, South America, and Europe. Plant
pathology plays an important part in this research, both in
the development of new cultivars with improved disease resis-
tance and in the production and marketing of high-quality
healthy seeds.

Rogers NK Seed Co. Contact: Paul Moser, Research Center,
6338 Highway 20-26, Nampa, ID 83687; 208/466-0319. On
January 1, 1991, Rogers Brothers Seed Company and the
vegetable seed division of Northrup King merged to form
Rogers NK Seed Co., a full-line vegetable seed company that
supplies seed to the processing, fresh market, and garden seed
industries. The major research emphasis is development of
new varieties and improvement of existing strains. Research
at Rogers NK has top priority; its main goal is to increase
the productivity, quality, and reliability of crops for the benefit
of the consumer, farmer, and processor. Plant pathology and
its application to disease control are important to its success.
Rogers NK is a member of the Sandoz Seeds group.

Rohm & Haas Company. Contact: Stephen R. Connor,
Independence Mall West, Philadelphia, PA 19105; 215/592-
3051. Rohm & Haas has been involved with agricultural
chemicals since 1929, when it introduced Lethane, the first
synthetic organic insecticide. In the 1940s, the company
developed Dithane fungicide, the most widely used organic
agricultural fungicide in the world. Dithane fungicides (maneb
and mancozeb formulations) are used to control more than
50 fungal diseases on more than 80 crops. In 1989, myclobutanil
(Rally, Nova, Systhane) was introduced for disease control
in apples and grapes. Current fungicide research efforts are
on a wide variety of novel fungicides.

Rothamsted Experiment Station. Contact: Librarian,
Harpenden, Herts. AL5 2JQ, England.

Sakata Seed America, Inc. Contact: Richard H. Morrison,
105 Boronda Road, Salinas, CA 93907; 408/758-0505.

Sandoz Crop Protection Corp. Contact: Louie T. Hargett,
1300 E. Touhy Ave., Des Plaines, IL 60018; 708/390-3806.
Sandoz Crop Protection Corp. (SCPC) produces innovative
biological and chemical products for North American agricul-
ture. Products include chemical herbicides and fungicides and
chemical and biological insecticides. Several major fungicide
products in development will have uses in peanuts, turf, and
wheat. SCPC’s headquarters are in Des Plaines, IL. The
research division is in Palo Alto, CA. Research and develop-
ment farms are in Gilroy, CA, and Greenville, MS. SCPC
was organized in 1986 and is a division of Sandoz Corporation,
the U.S. subsidiary of Swiss-based Sandoz Ltd., an inter-
national producer of pharmaceutical, agricultural, nutritional,
and chemical products.

0. M. Scott & Sons. Contact: J. Bell, D. G. Scott Research
Center, Marysville, OH 43041; 513/644-0011. The O. M. Scott
& Sons Co., with its title “First in Lawns,” has been the
recognized leader of the lawn products industry since 1870.
Fertilizers, grass seed, and control products are sold to home-
owners and professional users, such as golf course, park, indus-
trial lawn, and commercial growers. Scott markets a complete
line of fungicide products for turf.

Trical, Inc. Contact: Tom Duafala, P.0O. Box 1327, Hollister,
CA 95024; 408/637-0195. Trical, Inc., has been a leader in
soil fumigation for more than 28 years, successfully controlling
diseases, weeds, nematodes, and soilborne insects and
improving the yield and quality of agricultural products.

Uniroyal Chemical Company. Contact: Allyn R. Bell, 74 Amity
Road, Bethany, CT 06524; 203/393-2163. Uniroyal established
an agricultural chemical company more than 45 years ago
as a developer and supplier of fungicides, herbicides, miticides,
and plant growth regulants, Emphasis was directed toward
providing unique products in each of these areas. With the
introduction of systemic fungicides for cereal/cotton disease
control, the company began a solid commitment to seed treat-
ment technology worldwide. Gustafson, Inc., an associate, has
strengthened its efforts in this technology. Uniroyal also mar-
kets several soil fungicides for row crops, turf, and ornamentals.
Its current spectrum of fungicide products consists of carboxin
(Vitavax), etridiazole (Terrazole), oxycarboxin (Plantvax),
PCNB (Terraclor), and thiram. Efforts are directed at foliar
fungicides for fruit and field crops, including both systemic
and nonsystemic active ingredients. The company has active
programs with various universities, USDA pathologists, and
extension people in the United States to evaluate these candi-
dates in disease management programs.

Unocal Chemicals and Minerals Division. Contact: Sahag
K. Garabedian, 3960 Industrial Blvd., Suite 600B, West Sacra-
mento, CA 95691; 916/372-6050.

USDA Forest Service. Contact: Leon LaMadeleine, 324 25th
Street, Ogden, UT 84401.



