LCOR2—Spatial Correlation Analysis Software for the Personal Computer

T. R. GOTTWALD, Research Plant Pathologist, U.S. Department of Agriculture, Agricultural Research Service, 2120 Camden Rd., Orlando, FL 32803; S. M. RICHIE, Assistant Professor, Department of Electrical Engineering, University of Central Florida, Orlando 32816; and C. L. CAMPBELL, Associate Professor, Department of Plant Pathology, North Carolina State University, Raleigh 27695

ABSTRACT

Gottwald, T. R., Richie, S. M., and Campbell, C. L. 1992. LCOR2—Spatial correlation analysis software for the personal computer. Plant Dis. 76:213-215.

A software program for the personal computer, written in the 'C' language, was developed to analyze spatial patterns of plant disease and pathogen propagules. The program was adapted from a previous mainframe version and is based on the Modjeska and Rawlings model for spatial correlation analysis of uniformity data. The mainframe program was improved by addition of degrees of freedom and significance tables to test correlation coefficients at each spatial lag position. The LCOR2 program will accommodate data files of up to 10,000 points. The LCOR2 program and user guide are available free of charge.

Analysis of spatial patterns of plant disease is becoming increasingly important in the interpretation of disease dynamics. Many pathogens and diseases display clustered or aggregated patterns of incidence (1,2). The spatial relationship among diseased individuals, when combined with biological and environmental knowledge about the pathosystem, can often provide insight as to how a particular disease may progress and what factors may influence disease spread.

Numerous analytical procedures exist to determine whether or not diseased individuals are aggregated, the relative strength of aggregation, and directionality or orientation of aggregation (1-3,7,8,10). One useful spatial correlation (lag correlation) analysis (7) was originally developed to characterize field variation (of disease, growth, fertility pattern, yield, etc.), i.e., the nature and orientation of patterns in the field, and to provide guidance for determination of optimum plot size and shape. This analysis has been successfully applied in several pathosystems (1,4-7) to characterize the spatial pattern of diseases and pathogen propagules. Data are collected from rectangular field plots as counts of diseased plants, diseased leaves, lesions. or propagules per unit of soil within quadrats. All counts or quadrat values are then compared with all others in the matrix of quadrats (1,7,9). The lag cor-

Accepted for publication 5 November 1991 (submitted for electronic processing).

This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 1992.

relation program (7) was originally written in the FORTRAN language and modified with a SAS data interface (SAS Institute, Cary, NC) for a mainframe computer.

The LCOR2 program described here is an adaptation of the original FOR-TRAN program, written and compiled in the 'C'language (Turbo 'C++'Version 1.0, Borland International, Scotts Valley, CA) for 8088/80286/80386/80486 personal computers. The purpose of this work was to adapt and improve on the original mainframe program, making it more flexible and accessible to the personal computer user.

The Modjeska and Rawlings model. The spatial correlation model assumes that all pairs of observations or counts that have the same spatial relationship have the same correlation (7). The subscripts i and j denote the position of quadrats within the rectangular grid such that i = 1, 2,... and j = 1, 2,... designate row and column numbers, respectively. The correlations at the various distances are then $\rho(l,k)$, where l = i'-i and k =j'—j define the two-dimensional lags or number of quadrats from quadrat (i,j)across rows and across columns, respectively, to quadrat (i',j'). Because of the assumed symmetry of the correlations, $\rho(l,k) = \rho(-l,-k)$ and $\rho(l,-k) = \rho(-l,k)$. Thus, three spatial correlations are defined: $\rho^+ = {\rho(l,k)}, \ \rho^- = {\rho(l,-k)},$ and $\rho = 1/2(\rho^+ + \rho^-)$. The first row and column of ρ^+ and ρ^- (where l=0 and k = 0) are identical. For l,k > $0, \rho^+$ and ρ^- contain spatial correlations for lags in different diagonal directions across the field (7).

Data format and input requirements. The LCOR2 program requires DOS 2.0 or higher, a math coprocessor, and color

EGA or VGA graphics adapter; a mouse pointing device is optional. Data for use with LCOR2 can be prepared with the aid of any word processor, spread sheet, or database program that can output files in ASCII (American Standard Code for Information Interchange). Input data sets are arranged in columns. The first two columns contain x and y coordinates of spatial position associated with individual quadrats or counts; successive columns can represent replications, different sampling dates, different fields, etc. Data matrix size for program input is limited to 100×100 counts, which is 10,000 individual data points with no dimension greater than 100. Column headings can be used but are ignored by the program, which considers only integers ≥ 0 . Thus, the only restriction is that column headings cannot be integers.

The LCOR2 program processes each data column with reference to the first two columns, which indicate spatial location. The program can be run interactively through the main menu either from the keyboard or via a mouse. When the program is running, a program processing bar is displayed that dynamically indicates the progress (percent completion) of the analysis. Data sets of a 20 \times 20 matrix of quadrats require 2-30 sec to process, depending on the speed of the computer's microprocessor. Alternatively, a set of simple batch commands can be written that will perform numerous analyses sequentially. The batch commands take the following form:

LCOR(INPUT FILESPEC)#(OUTPUT FILESPEC),

in which the command LCOR initializes the program and the file specifications direct where the input is to be found and output saved, respectively. The integer separating the file specifications indicates which data column is to be processed. Thus, the following set of batch commands:

LCOR C:\FIELD\DAT\TEST27.DAT 2 ...
A:TEST27-2.OUT

LCOR C:\FIELD\DAT\TEST27.DAT 3 ...
A:TEST27-3.OUT

LCOR C:\FIELD\DAT\TEST27.DAT 4 ...
A:TEST27-4.OUT

Table 1. Sample output file of data processed by LCOR2 in a matrix of 11×11 quadrats

	om egg.dat for	DATE: 9-20-199	00 TIME: 1:26)"					
Axes"	om egg.dat for	2	3	4	5 6	7	8	9 10	
1	0	0	7	7	0 0		0	0 0	
2	ő	4	3	8	6 27		4	0 40	
3	3	10	34	109	105 20		17	20 15	
4	15	11	163	86	160 7		10	75 12 0 47	
5	2	16	125	0	95 42		0		
6	16	18	34	50	40 103		70	75 45 15 0	
7	7	11	36	23	95 53		9 0	0 13	
8	0	6	65	29	27 58			11 (
9	6	22	31	50	0 12		0 5	1 (
10	28	4	0	60	8 0		0	0 (
11	5	6	14	16	0 20	U U	U	0	,
RHO-BA	AR" 0	1	2	3	4	5	6	7	8
	1.00000**	0.33498**	0.26740**	0.03124	0.07209	-0.01652	0.03001	0.04501	0.0490
0	0.43059**	0.19675*	0.16458	-0.00526	0.06062	-0.02939	-0.04222	0.09058	-0.0286
1	0.03333	0.01445	0.09523	0.00238	0.03449	-0.06455	-0.04447	0.10100	-0.0443
2 3	-0.04023	-0.13245	-0.01118	-0.04367	-0.09951	-0.20942	-0.15572	0.02817	-0.03190
3 4	-0.04023 -0.00523	-0.07202	-0.15474	-0.11734	-0.31905*	-0.31840*	-0.17415	-0.12113	-0.18188
5	-0.00323 -0.13800	-0.11020	-0.24973	-0.27401	-0.28721	-0.27332	-0.24207	-0.24514	-0.4307
6	-0.13800 -0.06201	-0.03153	-0.23430	-0.22623	-0.15065	-0.18658	-0.20235	-0.14613	-0.0588
7	-0.00201	-0.03723	-0.21980	-0.10467	-0.17212	-0.17420	-0.10698	-0.16623	0.14243
8	-0.00303 -0.04157	-0.05725	-0.04055	-0.06901	-0.32650	-0.26318	0.22517	0.00863	0.05909
'DEGRE	EES OF FREE	DOM"				_	,	7	0
'Axes"	0	1	2	3	4	5	6	7	8
0	119	108	97	86	75	64	53	42	31
1	108	98	88	78	68	58	48	38	28
2	97	88	79	70	61	52	43	34	25
3	86	78	70	62	54	46	38	30	22
4	75	68	61	54	47	40	33	26	19
5	64	58	52	46	40	34	28	22	16
6	53	48	43	38	33	28	23	18	13
7	42	38	34	30	26	22	18	14 10	10 7
8	31	28	25	22	19	16	13	10	/
"CICNIE	TO ANT COR	DELATION LES	/EL (5%)"						
		RELATION LEV	LL (370)	•	4	5	6	7	8
"Axes"	0	1	2	3	4	5	0.26580	7	0.34372
	0.17825	0.18721	0.19757	0.20977	0.22442	0.24254	0.26580	0.29731	0.34372
"Axes"	0 0.17825 0.18721	0.18721 0.19656	0.19757 0.20739	0.20977 0.22013	0.22442 0.23547	0.24254 0.25444	0.26580 0.27883	0.29731 0.31191	0.34372 0.36075
"Axes" 0 1 2	0 0.17825 0.18721 0.19757	0.18721 0.19656 0.20739	0.19757 0.20739 0.21876	0.20977 0.22013 0.23215	0.22442 0.23547 0.24828	0.24254 0.25444 0.26826	0.26580 0.27883 0.29398	0.29731 0.31191 0.32893	0.34372 0.36075 0.38067
"Axes" 0 1 2 3	0 0.17825 0.18721 0.19757 0.20977	1 0.18721 0.19656 0.20739 0.22013	2 0.19757 0.20739 0.21876 0.23215	0.20977 0.22013 0.23215 0.24633	0.22442 0.23547 0.24828 0.26341	0.24254 0.25444 0.26826 0.28460	0.26580 0.27883 0.29398 0.31191	0.29731 0.31191 0.32893 0.34912	0.34372 0.36075 0.38067 0.40439
"Axes" 0 1 2	0 0.17825 0.18721 0.19757 0.20977 0.22442	1 0.18721 0.19656 0.20739 0.22013 0.23547	0.19757 0.20739 0.21876 0.23215 0.24828	0.20977 0.22013 0.23215 0.24633 0.26341	0.22442 0.23547 0.24828 0.26341 0.28167	0.24254 0.25444 0.26826 0.28460 0.30435	0.26580 0.27883 0.29398 0.31191 0.33364	0.29731 0.31191 0.32893 0.34912 0.37366	0.34372 0.36075 0.38067 0.40439 0.43300
"Axes" 0 1 2 3	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800
"Axes" 0 1 2 3 4	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400
"Axes" 0 1 2 3 4 5 6 7	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400 0.57600
"Axes" 0 1 2 3 4 5 6	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400	0.34372
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNIE	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)"	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400 0.57600
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII "Axes"	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)"	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400 0.57600 0.66600
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LET 1	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400 0.57600 0.66600
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LET 1 0.24450 0.25663	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.57600	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400 0.57600 0.66600
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LET 1 0.24450 0.25663 0.27059	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.43300 4 0.29242 0.30648 0.32272	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.57600 7 0.38418 0.40230 0.42333	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400 0.66600 8 0.4415 0.4624 0.48676
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.57600	0.34372 0.36074 0.3806 0.40439 0.4330 0.4680 0.5140 0.66600 8 0.4415 0.4624 0.4867 0.5156
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821	0.34372 0.36074 0.38066 0.40439 0.43300 0.46800 0.57600 0.66600 8 0.4415 0.44624 0.4867 0.5156 0.5490
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII "Axes" 0 1 2 3 4 5	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.57600 7 0.38418 0.40230 0.42333 0.44818	0.34372 0.36075 0.38066 0.40433 0.43300 0.46800 0.57600 0.666600 8 0.44415 0.4624 0.4867 0.5156 0.5490
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.34789 0.38002	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562	0.34372 0.36075 0.38067 0.40433 0.43300 0.46800 0.51400 0.66600 8 0.4415 0.4624 0.4867 0.5156 0.5490 0.5900 0.6410
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400 0.57600 0.66600
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNH" "Axes" 0 1 2 3 4 5 6	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.34789 0.38002	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300	0.34372 0.36075 0.38067 0.40439 0.43300 0.46800 0.51400 0.66600 8 0.4415 0.4624 0.4867 0.5156 0.54900 0.6410 0.7080
"SIGNIH" "Axes" 0 1 2 3 4 5 6 7 8 "SIGNIH" "Axes" 0 1 2 3 4 5 6 7 8	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.44154	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300	0.3437' 0.3607' 0.3806' 0.4043' 0.4330' 0.4680' 0.5140' 0.56660'
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7 8 "RHO-F" "Axes"	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.44154 PLUS" 0	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230 0.46243	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333 0.48676	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818 0.51562	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821 0.54900	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562 0.59000	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100 0.64100	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300 0.70800	0.34372 0.36075 0.3806 0.40433 0.43300 0.46800 0.57600 0.66600 8 0.4415 0.4624 0.4867 0.5156 0.5490 0.6410 0.7980
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7 8 "RHO-F" "Axes" 0	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.344154 PLUS" 0 1.00000	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230 0.46243	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333 0.48676	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818 0.51562	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821 0.54900 4 0.07209	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562 0.59000 5 -0.01652	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100 0.64100	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300 0.70800	0.34372 0.36075 0.3806 0.40433 0.43300 0.46800 0.57600 0.66600 8 0.4415 0.4624 0.4867 0.5156 0.5490 0.5900 0.6410 0.7980 8
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7 8 "RHO-F" "Axes" 0 1	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.44154 PLUS" 0 1.00000 0.43059	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LET 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230 0.46243 1 0.33498 0.17630	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333 0.48676	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818 0.51562 3 0.03124 -0.05288	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821 0.54900 4 0.07209 0.09106	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562 0.59000 5 -0.01652 0.01678	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100 0.64100 6 0.03001	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300 0.70800	0.34372 0.36075 0.3806 0.40433 0.43300 0.46800 0.57600 0.66600 8 0.4415 0.4624 0.4867 0.5156 0.5490 0.5900 0.6410 0.7980 0.7980
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7 8 "RHO-I" "Axes" 0 1 2	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.44154 PLUS" 0 1.00000 0.43059 0.03333	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LET 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230 0.46243 1 0.33498 0.17630 0.01598	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333 0.48676 2 0.26740 0.08205 0.15449	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818 0.51562 3 0.03124 -0.05288 0.00545	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821 0.54900 4 0.07209 0.09106 0.15247	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562 0.59000 5 -0.01652 0.01678 -0.01185	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100 0.64100 6 0.03001 -0.03765	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300 0.70800 7 0.04501 0.21815	0.3437' 0.3607' 0.3806' 0.4043' 0.4330' 0.4680' 0.5140' 0.5760' 0.6660'
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7 8 "RHO-I" "Axes" 0 1 2 3 3	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.44154 PLUS" 0 1.00000 0.43059 0.03333 -0.04023	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230 0.46243 1 0.33498 0.17630 0.01598 -0.09062	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.34789 0.38002 0.42333 0.48676 2 0.26740 0.08205 0.15449 0.11383	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818 0.51562 3 0.03124 -0.05288 0.00545 0.05108	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821 0.54900 4 0.07209 0.09106 0.15247 -0.01035	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562 0.59000 5 -0.01652 0.01678	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100 0.64100 6 0.03001 -0.03765 0.07419	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300 0.70800 7 0.04501 0.21815 0.07735	0.3437: 0.3607 0.3806 0.4043 0.4330 0.4680 0.5140 0.5760 0.6660 8 0.4415 0.4624 0.4867 0.5156 0.5490 0.5900 0.6410 0.7080 0.7980 8 0.0490 0.0455 0.1201 0.0584
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7 8 "RHO-I" "Axes" 0 1 2 3 4 4 5	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.44154 PLUS" 0 1.00000 0.43059 0.03333 -0.04023 -0.00523	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230 0.46243 1 0.33498 0.17630 0.01598 -0.09062 -0.03021	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333 0.48676 2 0.26740 0.08205 0.15449 0.11383 -0.12099	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818 0.51562 3 0.03124 -0.05288 0.00545 0.05108 -0.12795	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821 0.54900 4 0.07209 0.09106 0.15247 -0.01035 -0.31927	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562 0.59000 5 -0.01652 0.01678 -0.01185 -0.18583	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100 0.64100 6 0.03001 -0.03765 0.07419 -0.10749	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300 0.70800 7 0.04501 0.21815 0.07735 -0.07636 -0.07228 -0.33068	0.34372 0.36075 0.3806 0.40433 0.43300 0.46800 0.51400 0.666600 8 0.4415 0.4624 0.4867 0.5156 0.5490 0.6410 0.7080 0.7980 8 0.0490 0.0455 0.1201 0.0584 -0.2737
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7 8 "RHO-F" "Axes" 0 1 2 3 4 5 6 7 8	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.44154 PLUS" 0 1.00000 0.43059 0.03333 -0.04023 -0.00523 -0.13800	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230 0.46243 1 0.33498 0.17630 0.01598 -0.09062 -0.03021 -0.13812	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333 0.48676 2 0.26740 0.08205 0.15449 0.11383 -0.12099 -0.30238	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818 0.51562 3 0.03124 -0.05288 0.005108 -0.12795 -0.33273	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821 0.54900 4 0.07209 0.09106 0.15247 -0.01035 -0.31927 -0.30520	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562 0.59000 5 -0.01652 0.01678 -0.01185 -0.18583 -0.35450	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100 0.64100 6 0.03001 -0.03765 0.07419 -0.10749 -0.25514	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300 0.70800 7 0.04501 0.21815 0.07735 -0.07636 -0.07228	0.34372 0.36072 0.3806 0.40433 0.43300 0.46800 0.551400 0.666600 8 0.4415 0.4624 0.4867 0.5156 0.5490 0.5900 0.6410 0.7080 0.7980 8 0.0490 0.0455 0.1201 0.0588 -0.2737 -0.3146
"Axes" 0 1 2 3 4 5 6 7 8 "SIGNII" "Axes" 0 1 2 3 4 5 6 7 8 "RHO-I" "Axes" 0 1 2 3 4 4 5	0 0.17825 0.18721 0.19757 0.20977 0.22442 0.24254 0.26580 0.29731 0.34372 FICANT COR 0 0.23282 0.24450 0.25793 0.27365 0.29242 0.31546 0.34480 0.38418 0.44154 PLUS" 0 1.00000 0.43059 0.03333 -0.04023 -0.00523	1 0.18721 0.19656 0.20739 0.22013 0.23547 0.25444 0.27883 0.31191 0.36075 RELATION LE 1 0.24450 0.25663 0.27059 0.28694 0.30648 0.33050 0.36112 0.40230 0.46243 1 0.33498 0.17630 0.01598 -0.09062 -0.03021	2 0.19757 0.20739 0.21876 0.23215 0.24828 0.26826 0.39298 0.32893 0.38067 VEL (1%)" 2 0.25793 0.27059 0.28518 0.30227 0.32272 0.34789 0.38002 0.42333 0.48676 2 0.26740 0.08205 0.15449 0.11383 -0.12099	0.20977 0.22013 0.23215 0.24633 0.26341 0.28460 0.31191 0.34912 0.40439 3 0.27365 0.28694 0.30227 0.32025 0.34179 0.36834 0.40230 0.44818 0.51562 3 0.03124 -0.05288 0.00545 0.05108 -0.12795	0.22442 0.23547 0.24828 0.26341 0.28167 0.30435 0.33364 0.37366 0.43300 4 0.29242 0.30648 0.32272 0.34179 0.36468 0.39292 0.42914 0.47821 0.54900 4 0.07209 0.09106 0.15247 -0.01035 -0.31927 -0.30520 -0.25404	0.24254 0.25444 0.26826 0.28460 0.30435 0.32893 0.36075 0.40439 0.46800 5 0.31546 0.33050 0.34789 0.36834 0.39292 0.42333 0.46243 0.51562 0.59000 5 -0.01652 0.01678 -0.01185 -0.118583 -0.35450 -0.34115	0.26580 0.27883 0.29398 0.31191 0.33364 0.36075 0.39599 0.44400 0.51400 6 0.34480 0.36112 0.38002 0.40230 0.42914 0.46243 0.50541 0.56100 0.64100 6 0.03001 -0.03765 0.07419 -0.10749 -0.25514 -0.30249	0.29731 0.31191 0.32893 0.34912 0.37366 0.40439 0.44400 0.49700 0.57600 7 0.38418 0.40230 0.42333 0.44818 0.47821 0.51562 0.56100 0.62300 0.70800 7 0.04501 0.21815 0.07735 -0.07636 -0.07228 -0.33068	0.34372 0.36075 0.38066 0.40439 0.43300 0.46800 0.57600 0.66600 8 0.4415 0.4624 0.4867 0.5156 0.5490 0.5900 0.6410 0.7980

(continued on next page)

Table 1. (continued from preceding page)

"RHO-N	INUS"								
"Axes"	0	1	2	3	4	5	6	7	8
0	1.00000	0.33498	0.26740	0.03124	0.07209	-0.01652	0.03001	0.04501	0.04901
1	0.43059	0.21719	0.24711	0.04235	0.03018	-0.07555	-0.04679	-0.03699	-0.10284
2	0.03333	0.01293	0.03597	-0.00069	-0.08349	-0.11726	-0.16313	0.12465	-0.20884
3	-0.04023	-0.17428	-0.13618	-0.13842	-0.18867	-0.23301	-0.20395	0.13269	-0.12229
4	-0.00523	-0.11383	-0.18849	-0.10673	-0.31883	-0.28230	-0.09317	-0.16998	-0.09005
5	-0.13800	-0.08229	-0.19708	-0.21529	-0.26291	-0.20550	-0.18164	-0.15960	-0.54693
6	-0.06201	0.03667	-0.16135	-0.20293	-0.04727	-0.09702	-0.16862	-0.04236	0.01533
7	-0.00303	0.03138	-0.22114	-0.06603	-0.07796	-0.05984	-0.03435	-0.23516	0.01333
8	-0.04157	-0.06411	0.00053	0.08444	-0.34163	-0.25403	0.36894	-0.30150	-0.19562

will run three sequential analyses, each on a different data column (columns 2, 3, and 4), drawing data from a single data file (TEST27.DAT) located in a subsubdirectory (FIELD\DAT) on a hard disk drive (C:) and will output results of the three LCOR analyses to three files on a floppy disk drive (A:). The output files can then be stored or printed.

LCOR2 program output. The output file contains the original data displayed in matrix format (Table 1). This is followed by a table of autocorrelation coefficients titled RHO-BAR (= ρ), in which a coefficient is given for each spatial lag position. Because of insufficient data to calculate correlation coefficients for the most distal lags, the output matrices are restricted to three lags less than the dimensions of the input matrix. Autocorrelation coefficients significant at P = 0.05 and P = 0.01 are indicated by single and double asterisks, respectively, for RHO-BAR output only. A table of degrees of freedom follows the autocorrelation coefficients. Individual degrees of freedom are calculated for each spatial lag position as $(n_1 - l)(n_2 - k) - 2$, where n_1 is the number of quadrats in one direction, n₂ is the number of quadrats in the other direction, and l and k are the distances from the origin in each direction, e.g., l across crop rows, k within crop rows. In the example in Table 1, the degrees of freedom for each position in the matrix is (11 - l)(11 - k) - 2. The degrees of freedom were utilized to determine significance of the correlation coefficients for each of the spatial lag positions at P = 0.05 and P = 0.01.

The next two analyses presented, RHO-PLUS (ρ^+) and RHO-MINUS (ρ^-), are tables of correlation coefficients representing effects of disease in the different diagonal directions. These matrices can be used to detect a skewness of the spatial pattern in relation to the axis of the field row. For instance, if the diagonal lag correlations for ρ^- decrease faster over lags than the lag correlations

for ρ^+ , then a skewness of the spatial pattern is suggested relative to the sides of the field (7).

Interpretation of sample output. The sample output represents an analysis of data taken from an epidemic of Asiatic citrus canker in a grapefruit grove in Entre Rios, Argentina, in 1987, 14 days after the start of the epidemic (Table 1). Data were collected as the number of diseased leaves per tree. Each tree had many leaves and thus was considered a quadrat. From the RHO-BAR it was concluded that diseased trees were positively correlated (P = 0.05) with those one tree away within row, two trees away across rows, and one tree away at a diagonal on the date of assessment. Figure 1 shows the proximity pattern that can be derived from the RHO-BAR correlation coefficient table. There was no clear indication that the RHO-PLUS and RHO-MINUS correlation coefficients decreased at different rates over the spatial lags; thus, no skewness to the proximity pattern relative to the tree rows was detected for this assessment date.

Fig. 1. Proximity pattern derived for LCOR2 RHO-BAR output of data from analysis of Asiatic citrus canker in a grapefruit grove in Argentina 14 days after the start of an epidemic. Data were counts of the number of diseased leaves per tree. Black, gray, and white boxes represent correlation coefficients significant at P = 0.01, significant at P = 0.05, and nonsignificant, respectively.

Discussion. LCOR2 has been used for analysis of spatial data relating to different pathogens of citrus (4-6). The program was especially useful for interpreting sequential data sets acquired from the same field over time. Processing time of the LCOR2 version for the personal computer is much improved over that of the original mainframe program. Improvements to the original program, such as the calculation of degrees of freedom and significance tables to test correlation coefficients at each spatial lag position, further enhance the utility of the LCOR2 program. The LCOR2 program and a brief user guide can be obtained free of charge by sending a 5.25- or 3.5-in. floppy disk with a selfaddressed, stamped, diskette mailer to the first author.

LITERATURE CITED

- Campbell, C. L., and Madden, L. V. 1990. Introduction to Plant Disease Epidemiology. John Wiley & Sons, New York. 532 pp.
- Campbell, C. L., and Noe, J. P. 1985. The spatial analysis of soilborne pathogens and root diseases. Annu. Rev. Phytopathol. 23:129-148.
- Cliff, A. D., and Ord, J. K. 1981. Spatial Processes: Models and Applications. Pion Ltd., London. 266 pp.
- Gottwald, T. R., Aubert, B., and Huang, K. L. 1990. Spatial pattern analysis of citrus greening in Shantou, China. Pages 421-427 in: Proc. Int. Conf. Citrus Virol. 11th.
- Gottwald, T. R., and Graham, J. H. 1990. Spatial pattern analysis of epidemics of citrus bacterial spot in Florida citrus nurseries. Phytopathology 80:181-190.
- Gottwald, T. R., Timmer, L. W., and McGuire, R. G. 1989. Analysis of disease progress of citrus canker in nurseries in Argentina. Phytopathology 79:1276-1283.
- Modjeska, J. S., and Rawlings, J. O. 1983. Spatial correlation analysis of uniformity data. Biometrics 39:373-384.
- Nicot, P. C., Rouse, D. I., and Yandell, B. S. 1984. Comparison of statistical methods for studying spatial patterns of soilborne plant pathogens in the field. Phytopathology 74:1399-1402.
- Noe, J. P., and Campbell, C. L. 1985. Spatial pattern analysis of plant parasitic nematodes. J. Nematol. 17:86-93.
- Upton, G., and Fingleton, B. 1985. Spatial Pattern Analysis by Example. John Wiley & Sons, New York. 410 pp.

Salute to APS Sustaining Associates

This section is designed to help APS members understand more about APS Sustaining Associates. Information is supplied by company representatives. Each month features different companies. A complete listing appears in each issue of *Phytopathology*.

Maharashtra Hybrid Seeds Company Ltd. Contact: R. B. Barwale, Managing Director, 19 Raj Mahal, 84 Veer Nariman Rd., Bombay, Maharashtra, India 20. Maharashtra is a producer, processor, marketer, and researcher of hybrid and improved seed varieties.

Merck & Co. Inc. Contact: Richard A. Pence, P.O. Box 2000, Rahway, NJ 07065; 201/750-8605.

Mobay Corporation. Contact: W. C. Carlson, P.O. Box 4913, Kansas City, MO 64120; 816/242-2297. Mobay is a basic manufacturer of a diversified line of agricultural chemicals and specialty chemical products. The Agricultural Chemicals Division is a leader in the development and marketing of ergosterol-biosynthesis-inhibiting fungicides in the United States. One of these products is Bayleton systemic fungicide, which is registered for the control of specific diseases in agricultural and specialty crops. Mobay also manufactures and distributes the fungicide Dyrene, which is used for the control of certain diseases in vegetable crops and turfgrasses.

Monsanto Agricultural Company. Contact: D. R. Gigax, 800 N. Lindbergh Blvd., St. Louis, MO 63167; 314/694-3571. Monsanto Agricultural Company is an operating unit of Monsanto Company, with headquarters in St. Louis, Missouri. It is a recognized world leader in the research, development, manufacturing, and marketing of crop protection chemicals. The company also produces a variety of animal feed supplements and preservatives and owns two seed companies that produce high-quality soybean and wheat seed. Total 1990 sales

were more than \$1.6 billion, with annual research and development expenditures exceeding \$100 million. Areas of new product research include chemical control of weeds, insects, and plant diseases, with an increasing emphasis on applying the tools of biotechnology to crop improvement and protection and to animal nutrition and health.

NOR-AM Chemical Company. Contact: Edward P. Pieters, 3509 Silverside Road, P.O. Box 7495, Wilmington, DE 19803; 302/575-2043. NOR-AM Chemical Company is a leading manufacturer and supplier of specialty products for agricultural, pest control, and turf and ornamental markets. Its major fungicide products include BANOL turf fungicide, BOTRAN 75W fungicide for fruits, and the soil fumigant products VORLEX and VORLEX 201.

Northfield Lab. Contact: Trevor J. Wicks, Department of Agriculture, Box 1671 GPO, Adelaide 5001, Australia; 082668468.

Northrup King Company. Contact: David F. Kendra, Research Center, Highway 19, Stanton, MN 55081; 507/663-7636.

Pest Pros Inc. Contact: Randy M. Van Haren, P.O. Box 188, Plainfield, WI 54966; 715/335-4046. Pest Pros is an independent crop consulting firm that specializes in integrated crop management of vegetables. It offers fertility, IPM, and cultural management expertise on potatoes, onions, carrots, cole crops, and mint. Pest Pros runs its own nematode diagnostic laboratory to complement its IPM program. This laboratory is one of the few private labs to run soil screening for Verticillium dahliae. A potato early dying analysis service assesses the nematode/Verticillium complex in each field during the rotation crop prior to potatoes. Management strategies are developed for the efficient control of potato early dying on this basis.

1992 Advertisers Index

Academic Press	
The British Council	• • •
INIPLIB	