Occurrence, Impact, and Fungicidal Control of Girdling Stem Cankers Caused by *Cylindrocladium scoparium* on Eucalyptus Seedlings in a South Florida Nursery

E. L. BARNARD, Forest Pathologist, Divisions of Forestry and Plant Industry, Florida Department of Agriculture and Consumer Services, P.O. Box 1269, Gainesville 32602

ABSTRACT

Cylindrocladium scoparium caused extensive losses of eucalyptus seedlings in a south Florida tree nursery by inducing girdling cankers on the lower stems of *Eucalyptus grandis* and *E. robusta*. Infections apparently started in the leaves and progressed through the petioles to the stems. Disease was enhanced by ambient nursery conditions, including overhead irrigation, high temperatures and humidity, and reduced aeration resulting from close seedling spacing. Seedlings with incipient stem infections recovered after being removed from the nursery environment and outplanted in the field. Seedlings with advanced stem lesions, however, generally failed to recover, although some initially resprouted from below the cankers after outplanting. Fungicide trials and operational experience indicate that infections can be controlled with regular applications of benomyl, chlorothalonil, and possibly, copper hydroxide.

Reports of pathogenicity of *Cylindrocladium* spp. on eucalyptus (*Eucalyptus* spp.) are numerous (1-4,6-15). The files of Florida's Division of Plant Industry contain reports of *C. scoparium* Morgan, *C. pteridis* Wolf, and *C. floridana* Sob. & Seymour on at least seven *Eucalyptus* spp. In Florida, reports of *Cylindrocladium* spp. on eucalyptus foliage predominate, but occurrence of *C. scoparium* has been confirmed on roots and stems as well.

Eucalyptus spp. have been grown in commercial nurseries in Florida for some years for use as ornamentals and experimental forest crops for wood fiber, energy wood, and/or solid wood products. In 1978, *C. scoparium* was repeatedly detected on the foliage of several *Eucalyptus* spp. in a nursery of containerized forest seedlings in south central Florida. In October of the same year and again in 1979, this fungus caused girdling stem cankers that resulted in serious damage to crops of *E. grandis* Hill ex Maid. and *E. robusta* Sm. This paper describes symptoms, distribution, impact, and fungicidal control of *C. scoparium* infections within this nursery. A preliminary report has been published (5).

MATERIALS AND METHODS

Nursery survey. In November 1978, a randomized survey was conducted to evaluate infections in seedling crops of *E. grandis* and *E. robusta* within the nursery. Fifty samples, each consisting of a Styrofoam block tray with 77 seedling cavities, were selected throughout the nursery using a random-number table. Eight additional sample trays were nonrandomly selected at loci of severe disease occurrence. Seedlings within each tray were individually assessed and the percentage of seedlings with advanced, apparently lethal, dark brown, black, and/or constricted stem cankers was recorded. More than 3,300 seedling stems were evaluated.

Postoutplant survival. At the time of disease outbreak, questions arose as to 1) the ability of infected seedlings to survive after outplanting and/or 2) the ability of *C. scoparium* to kill seedlings removed from the nursery environment. Therefore, seedlings of *E. grandis* from the diseased crop were separated into three disease severity classes: 1 = healthy, no evidence of stem infection by *C. scoparium*; 2 = incipient, stems discolored (brown) but not black or constricted; and 3 = advanced, black and/or constricted stem cankers. Seedlings from each class were outplanted on a typical eucalyptus plantation site in plots containing five rows of six seedlings each. Each treatment was replicated three times in a Latin square design. Seedling survival was evaluated after 3 wk and again after 6 mo.

Fungicide trials. Natural inoculation. Fungicide trials were conducted in 1979. Plots of *E. grandis*, consisting of two Styrofoam trays each, were selected systematically in the nursery, and eight treatments (Table 1), replicated four times in a randomized complete-block design, were distributed therein. Fungicide sprays were applied at intervals of 7-14 days for 5 wk, beginning when seedlings reached a height of 10-15 cm. At the end of this period, seedlings were examined for *Cylindrocladium* infections. Seedlings from only the three most severely diseased plots within each treatment were individually assessed. One replicate with little or no disease was set aside from each treatment for artificial inoculation.

Artificial inoculation. Seedlings in the discarded replicate from each of the eight treatments were immediately reinfected with inoculum harvested from severely diseased seedlings from plots treated with each of the eight fungicide treatments. The inoculum was applied to each seedling as a 2-ml wound inoculation at the base of the stem with a 2-ml syringe. All seedlings were maintained in a completely shaded nursery throughout the trial.

Table 1. Fungicide treatments tested for control of Cylindrocladium scoparium on containerized eucalyptus seedlings in a south Florida nursery

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Label recommendation</th>
<th>Actual applied</th>
<th>Application¹</th>
<th>Application²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitertanol</td>
<td>0.6-1.2</td>
<td>0.96</td>
<td>FS, 7-day intervals</td>
<td></td>
</tr>
<tr>
<td>Thiadimenol</td>
<td>0.6+</td>
<td>0.60</td>
<td>FS, 14-day intervals</td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>0.6-1.2</td>
<td>0.84</td>
<td>FS, 14-day intervals</td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>0.6-1.2</td>
<td>0.84</td>
<td>DR, 0.95 L/plot, 14-day intervals</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>1.2-1.8</td>
<td>1.92</td>
<td>FS, 7-day intervals</td>
<td></td>
</tr>
<tr>
<td>Copper hydroxide</td>
<td>1.8-3.6</td>
<td>1.92</td>
<td>FS, 7-day intervals</td>
<td></td>
</tr>
<tr>
<td>Mancozeb</td>
<td>1.8-3.6</td>
<td>3.60</td>
<td>FS, 7-day intervals</td>
<td></td>
</tr>
<tr>
<td>Metiram</td>
<td>1.8-3.6</td>
<td>2.16</td>
<td>FS, 7-day intervals</td>
<td></td>
</tr>
</tbody>
</table>

¹All sprays (except benomyl DR) applied to runoff with a hand-held pump-up sprayer. No adjuvants were employed.
²FS = foliar spray, DR = drench.

Trade names are used in this article solely to provide specific information. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Divisions of Forestry and/or Plant Industry or imply its approval to the exclusion of other products that may also be suitable.

Contribution 543, Bureau of Plant Pathology.

Accepted for publication 21 December 1983 (submitted for electronic processing).

The publication cost of this article was defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 1984.
with their respective fungicides. The next day, these seedlings were artificially inoculated with *C. scoparium*. Inoculum was prepared by comminuting two 10-day-old potato-dextrose agar (PDA) slant cultures of the pathogen in 150 ml of water. Seventy-five milliliters of inoculum suspension was atomized onto the seedlings within each of the two Styrofoam trays that constituted a treatment plot. Trays were then grouped randomly and surrounded by a border of trays with uninoculated seedlings to simulate typical nursery conditions. Inoculated seedlings were individually assessed for infection 12 days later.

Treatment effects for both naturally and artificially inoculated seedlings were determined by comparing the percentages of seedlings that had disease-free stems.

RESULTS

Nursery survey. Infected seedlings displayed leaf spots, foliar wilting and necrosis, stem lesions and discoloration, and girdling stem cankers. Advanced stem cankers were dark brown or black, typically constricted, and often centered at or near leaf nodes (Fig. 1) 3–10 cm above the soil line. Infected seedlings were frequently bent or broken at the loci of girdling cankers (Fig. 2B). Isolations from symptomatic tissues consistently yielded *C. scoparium*. Occasionally, the pathogen produced white tufts of conidiophores and conidia in profusion on infected stems (Fig. 3).

Based on the random survey, the mean incidence of advanced stem cankers was 7.2%. Cankers were distributed throughout the seedling crop. Incidence within individual sample trays varied between 0 and 60%. Incidence in most trays was <10%.

Postoutplant survival. Many infected seedlings broke off at canker loci, either during planting or soon thereafter, especially if cankers were advanced at the time of outplanting. After 3 wk in the field, several such seedlings were sprouting from the root collar and/or the stem below the point of breakage (Table 2). *C. scoparium* was readily isolated from roots of class 3 seedlings that failed to sprout. After 6 mo, seedling establishment, mortality, and sprouting had stabilized, and only class 3 seedlings appeared to represent a significant risk in terms of field losses after outplanting. Seedings in class 2 survived and/or recovered to the point of equality with healthy class 1 seedlings (Table 2).

Fungicide trials. Fungicides were grouped according to relative effectiveness. In one group (Fig. 4A), apparent fungicidal protection, based on evaluation of three naturally inoculated replicate plots per treatment, did not hold up under the challenge of uniform, artificial inoculation. In the second group (Fig. 4B), apparent fungicidal protection held up very well under artificial inoculation. Chlorothalonil (Daconil 2787) and benomyl (Benlate 50WP) appeared to be most effective.

DISCUSSION

C. scoparium on eucalyptus is primarily a nursery problem (1,3,4,6,9,10), especially where seedlings are subjected to warm temperatures, high humidity, and close spacing (3,7,10). The containerized seedling system and overhead irrigation employed by the nursery considered in this report, together with south Florida's warm and humid climate, appear very conducive to disease development. Losses in this nursery in 1978 were estimated at $2,000, and in 1979, about 200,000 seedlings valued at $16,000 were destroyed by *C. scoparium*. This pathogen clearly represents a significant threat to nursery production of eucalyptus in Florida.

The symptoms of *Cylindrocladium* infections described in this paper are similar to those reported in South American literature as damping-off, neck rot, and etiolation of eucalyptus seedlings (1,3,4,6,9,10). However, damping-off caused by *C. scoparium* was not observed in the south.
been partly responsible for seeding mortality. Further work is needed to determine whether root colonization preceded or followed seeding mortality and whether root infections arose independently or progressively from stem infections.

Fungicidal control of *C. scoparium* on seeding eucalyptus has been reported by others (7,12). Bertus (7) obtained varying degrees of control of foliar and stem blights using benomyl, carbendazim, thiabendazole, and thiophanate methyl. Reis and Chaves (12) reported control of the fungus as a damping-off agent with fentinacetate, ferbam, and zineb. Copper fungicides were reported by Reis and Chaves (12) to be phytotoxic to eucalyptus seedlings. In this study, benomyl and chlorothalonil provided the most effective control, although copper hydroxide (Kocide 101) showed promise as well. No evidence of phytotoxicity resulting from copper hydroxide applications was observed.

Since the extensive losses sustained in 1979 by the nursery described in this report, an operational fungicide spray program using benomyl and chlorothalonil has been employed. These materials are applied as foliar sprays on alternating weeks, beginning when seedlings are 10–15 cm high and continuing until seedlings are shipped to the field 2–3 mo later. Under this regime, losses to *C. scoparium* have not occurred.

Some success in controlling *Cylindrocladium* infections on eucalyptus through soil sterilization and/or fumigation has been reported (9,12). Although this approach may be useful in certain situations, fungicidal protection of seeding crops also appears necessary to prevent foliar infection. In the south Florida nursery, *C. scoparium* could be isolated readily from residual root fragments left in Styrofoam trays from previous seeding crops. Therefore, fumigation of Styrofoam trays with methyl bromide and use of pathogen-free commercial potting soil were employed as the backbone of a *Cylindrocladium* control effort in 1979. This strategy alone failed to provide effective control.

ACKNOWLEDGMENTS

I wish to thank John Miller, Carlos Artaud, Ken Imme, and Gene Colquitt for their capable assistance with various aspects of this work.

LITERATURE CITED