1) **Pathogen establishment in the U.S. is possible. Factors to Consider:**
 a) Infection units (spores, mycelium, sclerotia, etc.) remain **viable** for a long period of time under natural conditions. (Low = less than one day, Med = less than 30 days, High = persists)
 b) There is a **natural** (wind, vectors, water, etc.) or **mechanical** (equipment, such as harvesters, sprayers, misters, airplanes crop dusters, etc.) **means of dissemination** within and among growing areas.
 c) The pathogen has a high infection efficiency. **Low** = Infection and establishment occurs under a narrow range of conditions; **High** = Infection and establishment occurs under a wide range of conditions.
 d) The pathogen has a high **reproductive potential** in the field.
 e) The pathogen has numerous **alternative hosts**. (Increased risk with asymptomatic hosts).
 f) U.S. **germplasm** is particularly **susceptible** to the pathogen. (Low = low percentage of susceptible germplasm; High = Most or all germplasm susceptible).
 g) The pathogen’s U.S. **germplasm** is densely and widely **distributed**. (Low = locally isolated; High = large acreage of monoculture)
 h) No effective or economical **control(s)** of the pathogen is available.
 i) Pathogen can survive intercrop periods over a wide range of conditions.

2) **A pathway for entry exists. Factors to Consider:**
 a) Material or commodities that can be infested/infected with the pathogen **arrive** at U.S. borders /ports with **frequency**. (Low = yearly or less; High = daily)
 b) Material or commodities that can be infested/infected with the pathogen can be **co-mingled** with non-contaminated commodity(-ies), during storage, transport, and /or processing.
 c) Material or commodities that can be infested/infected with the pathogen **arrives** at U.S. borders in **volume**, making (sampling/testing/detection) inspection difficult.
 d) Material or commodities that can be infested/infected with the pathogen is **distributed** to several locations.
 e) **No** method for rapid, reliable, and sensitive detection is available on entry.
 f) The pathogen can be **disseminated** by inanimate objects.

3) **The risk of an intentional introduction of a pathogen is dependent upon these factors:**
 a) The pathogen or its inoculum, or vector is **Low** = difficult; **High** = easy to obtain.
 b) The pathogen or its inoculum, or vector is **Low** = difficult; **High** = easy to grow.
c) The pathogen or its inoculum, or vector is Low = difficult; High = easy to handle.
d) The pathogen or its inoculum, or vector is Low = difficult; High = easy to transport.
e) The pathogen or its inoculum, or vector is Low = difficult; High = easy to deliver.

4) **The pathogen has significant social or psychological shock value. Factors to Consider:**
a) Pathogen presence can create uncertainty or affect markets, whether plants or animals.
b) The pathogen produces a toxin or byproduct, actual or perceived, that contaminates or accumulates in food/feed.
c) The pathogen can be genetically altered to threaten food/feed security.
d) The pathogen can affect natural resources, native plants or ornamentals, and/or urban landscapes.

5) **Pathogen establishment in the U.S. would have direct or trade-related economic effects on U.S. farmers, ranchers, or other agricultural producers.** Factors to Consider:
a) The commodity (-ies) affected has a high yearly value of production; (Low = less than $500M Med= $1B High = $5B or more)
b) Pathogen presence would adversely affect the market (raw, processed food/feed, animals).
c) Pathogen establishment in the U.S. would affect the economic well-being of U.S. producers and/or consumers.
d) Pathogen presence would raise unit costs of production (via yield losses and/or input cost increases) to lessen U.S. comparative advantage in the market. (Low= less than 1% Med= 5% High = 10% or more)
e) The presence of the pathogen in the U.S. would close off export markets due to other countries’ phytosanitary regulations.

6) **Public costs of monitoring for, eradicating, or managing the pathogen in the U.S.** Factors to Consider:
a) The probability of early detection is low.
b) The time frame for effective eradication is long. (Low = days, Med= one crop cycle, High = more than one crop cycle or years)
c) The costs of the pathogen’s eradication would be high. (APHIS input needed)
d) The costs of monitoring/detecting the pathogen within U.S. borders would be high. (APHIS input needed)
e) The costs of managing the pathogen population would be high. (Dollars/production unit/year)
f) There is insufficient knowledge for producers to cost-effectively or successfully manage the pathogen.
g) Producers and other affected parties do not have the equipment and/or expertise to deploy controls (e.g. chemical, biological, cultural practices).